Stop Deploying Blind!
Using and
to Light the Way

ArgoCon NA 2024

Your hosts today

Anastasiia Gubska Kostis Kapelonis

SRE/DevOps Engineer Developer Advocate
BT Group Codefresh by Octopus Deploy

gubskaZ2@gmail.com Argo Team member

kostis.kapelonis@octopus.com

mailto:gubska2@gmail.com
mailto:kostis.kapelonis@octopus.com

Agenda

Blind deployments
How Observability can help
Argo Rollouts, Metrics and Tools

Minimum requirements for fully automated deployments

Best practices for adopting Argo Rollouts

Common pitfalls and mistakes

The problem : Blind Deployments

Learning about failed deployments from customers

Developers pushing new release Users find out it doesn’t work

. SRE team called in for a rollback
to production

R

Kubernetes Capacity -

CPU Cores Requests

43.2%

Memory Requests

Disk Space Usage

Idle CPU

Memory Free

00:00

CPU Cores

== Allocatable CPU Cores == Reques

Problems

Web checks

12

Services

Smartscape

<

Memory

Disk I/0

Applications

All fine 2]

Databases

Al fine > 10

Home > Dashboards

0B

16:50 17:00

memory

16:50

== web_server 01

AWS account
demo envil

web_server_02

Memory / CPU

17:30

17:00 17:05 17:10 17:15

web_server_03

web_server_04

Let's use metrics, logs and traces

70
60 «
50
40
30
20

10
17:30 17:35

logins == logins (-1 hour)

server requests

logins

client side 1

OmSI - . . - . = = .

16:50
VMware vCe

emea-gdn-vc002

Migrations
Guests

Database

easyTravelBusiness (Derby Client)

12 845

Docker
3 Docker hosts

Containers —

Images —

17:00 17:05

Services

104

18. Jul 20. Jul 22.ul 24. Jul

223
5
o

1715 17:20

Most used 3rd party providers
www.easytravel.com

12:00 12:30 13:00 13:30

889
741
34

HTTP 4xx/5xx Status Codes

60

20:00 16. Feb

Global Error Reasons (NOTE: Not filterable with MZs due to dimensional data)

execution_status_name
CONNECTION_TIMEOU
REQUEST TIMEOUT
SCRIPT_FAIL
CONNECTION_REFUSED
CONSTRAINT.VIOLATED VALUE
BAD_REQUEST
SERVICE_UNAVAILABLE

NOT_FOUI

Memory

Support calls

Google hits

04:00

execution_status_value

15

24

08:00

Google hits

Sign ups

12:00

16:00

HTTP All Status Codes

Status code
SC_5xx
SC_4xx

SC_2xx

Global Error Reasons

of occurrences

1.69k

1t of occurrences

1.69k CONNECTION_TIMEOUT
902 REQUEST_TIMEOUT

290 SCRIPT_FAIL

53 CONNECTION_REFUSED

38 CONSTRAINT.VIOLATED.VALUE
35 BAD_REQUEST

20 SERVICE_UNAVAILABLE

19 NOT_FOUND
1INTERNAL_SERVER ERROR

Metrics checked by humans

Home > Dashboards. Home > Dashboard:

Memory / CPU logins. Memory Google hits Memory / CPU logins Memory Google hits Memory / CPU logins. Memory

Support calls Sign ups : S Support calls

08 10
17:00 2 730 1650 4 6 o 17:30

cpu — logins = logins (-1 hour) memory — logins (-1 hour) ~ logins

server requests Google hits server requests Google hits server requests Google hits

————————— e 1 | [L e B S

710 730 17:05 1710 175 1720 v £

web. D-seri

client side full page load client side full page load client side full page load

upper.25

upper.50

6:5 17:00 1 1 1 i 1 172:40 17:45 1 1655 1720 17225 17:30 17:80 1720 1700 v i 15 1720 i i

1 10 1715 1700 T 710 7

3:00 PM 3:30 PM 4:00 PM
deployed looking at metrics still looking at metrics

‘I love looking at my metrics for 2 hours after
each deployment”

- said no one ever

How production deployments should happen

o
as
‘650 1655 100 17:05 710 15 1720 1725 1730 173 1740 1745

Deployment happens at 5.00 pm on Friday 5:15 the whole team is at the pub

How observability can help

Why we need observability

e Learn about failed deployments before your users

e Decide quickly if deployment failed or not

e Compare historical data from previous deployments
e Automated monitoring and alerts even outside of

deployments

e Automated rollbacks WITHOUT human intervention.

4s
25
oms

16:50 16:55 17:00 17:05 17:10 1715 17:20 17:25 17:30 17:35 17:40 17:45

Make metrics work for you

o Metrics should indicate if a deployment is successful or not.

e If metrics are ok = Done

e |f metrics are not ok = Automatic rollback

@ Kubernetes Capacity -

Dashboards

CPU Cores Requests Idle CPU CPU Cores System Load

Memory / CPU logins Memory Google hits

43.2

Support calls Sign ups
000 16:50 17:00 17:30 17

memory cpu logins (-1 hour)
== Allocatable CPU Cores == Requested ad 1m == load 5m == load 15m Y P g

server requests [
Memory Requests Memory Free Memory Memory Usage

28.3%

POUNPOON
30

16:50 5 17:00 17
= memory usage == memory buffers = "

= web_server.01 web_servel e web_server_04

B-series C-series D-series
Disk Space Usage Disk 1/0

client side full page load

upper_25 6.81ms

upper_50

5.937% . ‘ Ll | .

upper_95

Our End Goal

Fully Automated Rollbacks

/ [roliback j_’ -
Artifact i a

Argo Rollouts

Workflows CD Rollouts Events Blog) .‘;!.'

Argo
Rollouts

& T 2405

Advanced Kubernetes deployment
strategies such as Canary and
Blue-Green made easy.

https://argoproj.qgithub.io/rollouts/

https://argoproj.github.io/rollouts/

20 ZE 2 2 2 2 2 2

Progressive delivery with Argo Rollouts

Kubernetes native
Standalone project
Does NOT depend on Argo CD '

A

Blue/Green support

Canary support

A/B testing and other Experiments
Zero downtime

Automatic rollbacks based on metrics

Installed on each deployment cluster

Blue-Green
Deployment

@ 'nitial version

Application
Version 34

Load
Balancer

Live
traffic

© New version deployed

Application
Version 34

Application
Version 35

Load
Balancer

Live
traffic

© Switch traffic

Application
Version 34

Application
Version 35

Load
Balancer

Application
Version 35

Load
Balancer

Live

traffic

-
LA

Users

Canary Release

@ Initial version

o \
Application y Load q -"
Version 34 Balancer Live E—'

traffic Users
© New version used by 10% of users
Application 90% -
Version 34 Load !"
__-| Balancer Live &—'l
Application -~ traffic Users
Version 35 10%
€ New version used by 33% of users
Application 66% -

Version 34 '\ Load §$
.| Balancer Live ==
Application , .-~ traffic Users
Version 35 33%

O \ew versionis used by all users
()

o 9 T
Application ¢ HES isad ¢ ~“
Version 35 Balancer Live Ba=

traffic Users

A/B testing

@ 'nitial version

Blue banner
homepage

Load
Balancer

Live
traffic

© A /Btesting for banner in hompage

Blue banner 50%
homepage

Green banner
homepage 50%

Load
Balancer

€ A /Btesting finished

Blue banner
homepage

Load
Balancer

Live
traffic

()

7
e B

Users

R

How the Rollout resource works

- =~

Rollout CRD

Existing deployment

Existing deployment

~~~~~~

Rollout CRD




apiVersion: argoproj.io/vlalphal 0
kind: Rollout
metadata:
name: example-rollout
spec:
replicas: 10
selector:
matchLabels:
app: nginx ROIIOUt
template:
metadata:
labels: eXtendS K8S
app: nginx
spec:
containers: deployment
- name: nginx
image: nginx:1.15.4
ports:
- containerPort: 80
minReadySeconds: 30
revisionHistoryLimit: 3
strategy:
canary: #Indicates that the rollout should use the Canary strategy
maxSurge: "25%"
maxUnavailable: ©
steps:
- setWeight: 10

- paxi;tion: 1Th # 1 hour Strategy

- setWeight: 20
- pause: {} # pause indefinitely




rollouts-demo @

Steps

7

& Set Weight

:20%

O Pause

Q) Set Weight

O Pause: 10s

& Set Weight

@ Pause: 10s

& Set Weight

O Pause: 10s

1 40%

: 60%

: 80%

Summary
Strategy
Step

Set Weight

Actual Weight

Revisions

Revision 2

argoproj/rollouts-demo:yellow

rollouts-demo-6¢f78c66¢5

=

Revision 1
argoproj/rollouts-demo:blue

rollouts-demo-687d76d795

] ]Jol

- 1/8

%20
\m 20

Containers

rollouts-demo

argoproj/rollouts-demo:yellow

& Edit

(~)
S canary

)

O Rollback @
| ol stable

v




Minimum Requirements



Minimum Requirements

o App capable of running multiple versions at the same time

e App shouldn't use shared/locked resources

e Argo Rollouts controller deployed on every cluster (if you're using muitiple ciusters)
e Avoid using Argo Rollouts for infra apps (cert-manager, nginx, CoreDNS, sealed-secrets)

o Metrics to tell if deployment is successful




Can you tell if a deployment is successful or
not within 15 minutes?

- WITHOUT a human involved



Decide what failed deployment means to you

Error rate: more than 5% of requests have errors = Failed
Request rate: requests rate falls under 100 rps = Failed
Response time: 90% of requests complete in under 250ms = Failed

Additional criteria:

e more than 5% of requests have errors OR requests duration increased
by more than 40% = Failed

e number of errors does not increase by 10% OR requests rate falls under
20 rps = Failed

Successful deployment criteria:

e 98% of requests succeed AND all requests complete in under 100 ms
= Success




Supported Metric providers

O

Prometheus
DATADOG
S 1" WAVEFRONT
by VMWare

new relic.

-

Amazon Cloudwatch

Custom Web call
Custom Job
Custom plugin
Apache SkyWalking




Analysis example

argoproj.io/vlalphal
: AnalysisTemplate

success-rate

- . service-name

- . success-rate
> 2m

result/@] >= 0.95

: http://prom-release-prometheus-server.prom.svc.cluster.local:80
sum( response_status{app="{{args.service-name}}",role="canary", status=~"2.*"})/
sum( response_status{app="{{args.service-name}}",role="canary"})



What to measure



USE/RED metrics

USE METHOD RED METHOD

Utilization (% time that service Rate (requests per second)

was busy) Errors (number of failed requests)
Saturation (queue length) Duration (how much time requests

Errors (count) take)




RED metrics for free with a service mesh (e.g. Linkerd)

deployment/webapp

deploy/books

SR 80.00%
deploy/traffic b >
|
RPS 3.08
SR 80.43%
deploy/webapp
P99 189 ms
da =07 SR 81.86%
> ——
P99 280 ms RPS 34
deploy/authors
SR 100.00%
Unmeshed
po/calico-node-nzsxx b ? RPS 1.5

P99 270 ms




For End-User Applications look at End User Metrics

e Number of logins

e Number of items put in the basket
o Rate of payments that succeed

e Rejected payments

e Search queries

e Duration of user session




Use cases



Get ad-hoc metrics from the application itself

e

Argo Rollouts

/metrics




Get metrics from an intermediate application

- -

Argo Rollouts

;) LINKERD

\\\\\\

(using service mesh)



Consult an external application for deployment status

swk

Stack

| |
%@ elastic " ¥ 1ogstash R
oGS - A

ﬁ Argo Rollouts




Make ad-hoc decision by a custom call or job

-

Run smoke tests . I
- Argo Rollouts




Common pitfalls



Common pitfalls

 Not having metrics

 Not having enough metrics

e Not having relevant Metrics
e Looking manually at metrics

e Not trusting metrics

e Not checking the requirements of Argo
Rollouts

e Not automating the full process




Before Argo Rollouts

Commit ) Deploy ) | Traffic switch | m) Prorrgc;’f:ek/Roll

Developer Operator Operator Operator

A A A A

R



Adopting Argo Rollouts partially

Commit ) Deploy o> | Traffic switch | ) Prorrgc;’f:ek/Roll

Developer Operator Rollouts Operator

S

R



The proper approach - automate everything

- -

Developer Argo CD Rollouts Rollouts
jX\ 'i' lil
= 2, 8,

R



Conclusion




Our end goal

Fully Automated Rollbacks

/ [ roliback j_’ -
Artifact i a




What we have seen today

e Learn the Requirements of Progressive Delivery

« Have Metrics in your apps |

e Employ Relevant Metrics ﬁ
o Automate deployment/promotions z‘

e Automate rollbacks

o Use Argo Rollouts for Kubernetes applications




How production deployments should happen

o
as
‘650 1655 100 17:05 710 15 1720 1725 1730 173 1740 1745

Deployment happens at 5.00 pm on Friday 5:15 the whole team is at the pub




Books about monitoring and metrics

OREILLY %
OREILLY"
Building Secure &
Reliable Systems

Best Practices for Designing, Implementing
and Maintaining Systems

-?:IJM’
The Site

Rehablhty
Engineering

Rehablhty
Wor_kbOok

Heather Adkins, Betsy Beyer, Rt Edited by Betsy Beyer,
Paul Blankinship, Piotr Lewandowski, Niall Richard Murphy. David K. Rensin, Edited by Betsy Beyer, Chris Jones,
Ana Oprea & Adam Stubblefield Kent Kawahara & Stephen Thorne Jennifer Petoff & Niall Murphy

View detalls View detalls

https://sre.google/books/



https://sre.google/books/

«  Anastasiia Gubska
SRE/DevOps Engineer, BT Group

%
‘1

1
| LU |

\Q ,ﬁ‘v -

CNCF’s First ,ss‘,<>
Deaf Ambassador *o




TAG Contributor Strategy

DEAF & HARD OF HEARING
b o WORKING GROUP

Wondering what it is like to be deaf in tech?

Want to know what our community can do to
Improve accessibility?

Come chat with us!

#deaf-and-hard-of-hearing (CNCF Slack)




Our Team on Stage

Tue, 3:46pm Beyond the Checkbox: Humanizing Accessibility

Tue, 4:30 pm Stop Deploying Blind! Using Observability and
Argo Rollouts to Light the Way

Wed, 12:10 pm  Aland ML: Let’s Talk About the Boring (yet
Critical!) Operational Side

Wed, 3:25 pm How to Get Started Contributing in the CNCF

Thu, 3:25 pm TLS and MTLS: Introduction to Modern Security

Fri, 11:55am Accessibility at KubeCon: Deaf Voices in Cloud
Native

r 1 TAG Contributor Strategy
DEAF & HARD OF HEARING
b o WORKING GROUP

Community Activities

Regency Thu, 4 pm Deaf and Hard of Hearing Advocacy Discussion DEI Community

Ballroom B Hub

ArgoCon Thu, 5pm Sign Language Crash Course DEI Community
Hub

Level 212558

Level 2|

Ballroom C

Level 21251 AD

Level 11
Ballroom B

DHHWG Program



Thank you!

https://argoproj.qithub.io/rollouts/

https://www.brendangregg.com/usemethod.html
https://arafana.com/blog/2018/08/02/the-red-method-how-t0-in

strument-your-services/

https://contribute.cncf.io/about/deaf-and-hard-of-hearing/

https://sre.gooale/books/



https://argoproj.github.io/rollouts/
https://www.brendangregg.com/usemethod.html
https://grafana.com/blog/2018/08/02/the-red-method-how-to-instrument-your-services/
https://grafana.com/blog/2018/08/02/the-red-method-how-to-instrument-your-services/
https://contribute.cncf.io/about/deaf-and-hard-of-hearing/
https://sre.google/books/

