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The problem : Blind Deployments



Learning about failed deployments from customers

Developers pushing new release Users find out it doesn’t work

. SRE team called in for a rollback
to production

R
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Metrics checked by humans
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‘I love looking at my metrics for 2 hours after
each deployment”

- said no one ever



How production deployments should happen

o
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Deployment happens at 5.00 pm on Friday 5:15 the whole team is at the pub




How observability can help



Why we need observability

e Learn about failed deployments before your users

e Decide quickly if deployment failed or not

e Compare historical data from previous deployments
e Automated monitoring and alerts even outside of

deployments

e Automated rollbacks WITHOUT human intervention.
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Make metrics work for you

o Metrics should indicate if a deployment is successful or not.

e If metrics are ok = Done

e |f metrics are not ok = Automatic rollback
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Our End Goal

Fully Automated Rollbacks

/ [ roliback j_’ -
Artifact i a




Argo Rollouts



Workflows CD Rollouts Events Blog ) .‘;!.'

Argo
Rollouts

& T 2405

Advanced Kubernetes deployment
strategies such as Canary and
Blue-Green made easy.

https://argoproj.qgithub.io/rollouts/



https://argoproj.github.io/rollouts/
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Progressive delivery with Argo Rollouts

Kubernetes native
Standalone project
Does NOT depend on Argo CD '

A

Blue/Green support

Canary support

A/B testing and other Experiments
Zero downtime

Automatic rollbacks based on metrics

Installed on each deployment cluster




Blue-Green
Deployment
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How the Rollout resource works

- =~

Rollout CRD

Existing deployment
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Rollout CRD




apiVersion: argoproj.io/vlalphal 0
kind: Rollout
metadata:
name: example-rollout
spec:
replicas: 10
selector:
matchLabels:
app: nginx ROIIOUt
template:
metadata:
labels: eXtendS K8S
app: nginx
spec:
containers: deployment
- name: nginx
image: nginx:1.15.4
ports:
- containerPort: 80
minReadySeconds: 30
revisionHistoryLimit: 3
strategy:
canary: #Indicates that the rollout should use the Canary strategy
maxSurge: "25%"
maxUnavailable: ©
steps:
- setWeight: 10

- paxi;tion: 1Th # 1 hour Strategy

- setWeight: 20
- pause: {} # pause indefinitely
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Minimum Requirements



Minimum Requirements

o App capable of running multiple versions at the same time

e App shouldn't use shared/locked resources

e Argo Rollouts controller deployed on every cluster (if you're using muitiple ciusters)
e Avoid using Argo Rollouts for infra apps (cert-manager, nginx, CoreDNS, sealed-secrets)

o Metrics to tell if deployment is successful




Can you tell if a deployment is successful or
not within 15 minutes?

- WITHOUT a human involved



Decide what failed deployment means to you

Error rate: more than 5% of requests have errors = Failed
Request rate: requests rate falls under 100 rps = Failed
Response time: 90% of requests complete in under 250ms = Failed

Additional criteria:

e more than 5% of requests have errors OR requests duration increased
by more than 40% = Failed

e number of errors does not increase by 10% OR requests rate falls under
20 rps = Failed

Successful deployment criteria:

e 98% of requests succeed AND all requests complete in under 100 ms
= Success




Supported Metric providers

O

Prometheus
DATADOG
S 1" WAVEFRONT
by VMWare

new relic.

-

Amazon Cloudwatch

Custom Web call
Custom Job
Custom plugin
Apache SkyWalking




Analysis example

argoproj.io/vlalphal
: AnalysisTemplate

success-rate

- . service-name

- . success-rate
> 2m

result/@] >= 0.95

: http://prom-release-prometheus-server.prom.svc.cluster.local:80
sum( response_status{app="{{args.service-name}}",role="canary", status=~"2.*"})/
sum( response_status{app="{{args.service-name}}",role="canary"})



What to measure



USE/RED metrics

USE METHOD RED METHOD

Utilization (% time that service Rate (requests per second)

was busy) Errors (number of failed requests)
Saturation (queue length) Duration (how much time requests

Errors (count) take)




RED metrics for free with a service mesh (e.g. Linkerd)

deployment/webapp
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For End-User Applications look at End User Metrics

e Number of logins

e Number of items put in the basket
o Rate of payments that succeed

e Rejected payments

e Search queries

e Duration of user session




Use cases



Get ad-hoc metrics from the application itself

e

Argo Rollouts

/metrics




Get metrics from an intermediate application

- -

Argo Rollouts

;) LINKERD

\\\\\\

(using service mesh)



Consult an external application for deployment status

swk

Stack

| |
%@ elastic " ¥ 1ogstash R
oGS - A

ﬁ Argo Rollouts




Make ad-hoc decision by a custom call or job

-

Run smoke tests . I
- Argo Rollouts




Common pitfalls



Common pitfalls

 Not having metrics

 Not having enough metrics

e Not having relevant Metrics
e Looking manually at metrics

e Not trusting metrics

e Not checking the requirements of Argo
Rollouts

e Not automating the full process




Before Argo Rollouts

Commit ) Deploy ) | Traffic switch | m) Prorrgc;’f:ek/Roll
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Adopting Argo Rollouts partially

Commit ) Deploy o> | Traffic switch | ) Prorrgc;’f:ek/Roll

Developer Operator Rollouts Operator

S

R



The proper approach - automate everything

- -

Developer Argo CD Rollouts Rollouts
jX\ 'i' lil
= 2, 8,

R



Conclusion




Our end goal

Fully Automated Rollbacks
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What we have seen today

e Learn the Requirements of Progressive Delivery

« Have Metrics in your apps |

e Employ Relevant Metrics ﬁ
o Automate deployment/promotions z‘

e Automate rollbacks

o Use Argo Rollouts for Kubernetes applications




How production deployments should happen

o
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Deployment happens at 5.00 pm on Friday 5:15 the whole team is at the pub




Books about monitoring and metrics

OREILLY %
OREILLY"
Building Secure &
Reliable Systems

Best Practices for Designing, Implementing
and Maintaining Systems

-?:IJM’
The Site

Rehablhty
Engineering

Rehablhty
Wor_kbOok

Heather Adkins, Betsy Beyer, Rt Edited by Betsy Beyer,
Paul Blankinship, Piotr Lewandowski, Niall Richard Murphy. David K. Rensin, Edited by Betsy Beyer, Chris Jones,
Ana Oprea & Adam Stubblefield Kent Kawahara & Stephen Thorne Jennifer Petoff & Niall Murphy

View detalls View detalls

https://sre.google/books/
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«  Anastasiia Gubska
SRE/DevOps Engineer, BT Group

%
‘1

1
| LU |

\Q ,ﬁ‘v -

CNCF’s First ,ss‘,<>
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TAG Contributor Strategy

DEAF & HARD OF HEARING
b o WORKING GROUP

Wondering what it is like to be deaf in tech?

Want to know what our community can do to
Improve accessibility?

Come chat with us!

#deaf-and-hard-of-hearing (CNCF Slack)




Our Team on Stage

Tue, 3:46pm Beyond the Checkbox: Humanizing Accessibility

Tue, 4:30 pm Stop Deploying Blind! Using Observability and
Argo Rollouts to Light the Way

Wed, 12:10 pm  Aland ML: Let’s Talk About the Boring (yet
Critical!) Operational Side

Wed, 3:25 pm How to Get Started Contributing in the CNCF

Thu, 3:25 pm TLS and MTLS: Introduction to Modern Security

Fri, 11:55am Accessibility at KubeCon: Deaf Voices in Cloud
Native

r 1 TAG Contributor Strategy
DEAF & HARD OF HEARING
b o WORKING GROUP

Community Activities

Regency Thu, 4 pm Deaf and Hard of Hearing Advocacy Discussion DEI Community

Ballroom B Hub

ArgoCon Thu, 5pm Sign Language Crash Course DEI Community
Hub

Level 212558

Level 2|

Ballroom C

Level 21251 AD

Level 11
Ballroom B

DHHWG Program



Thank you!

https://argoproj.qithub.io/rollouts/

https://www.brendangregg.com/usemethod.html
https://arafana.com/blog/2018/08/02/the-red-method-how-t0-in

strument-your-services/

https://contribute.cncf.io/about/deaf-and-hard-of-hearing/

https://sre.gooale/books/
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