
Argo Rollouts and
the Downward API
GitOpsCon US 2024

Your host

Kostis Kapelonis

kostis@codefresh.io

Developer Advocate - Codefresh

Argo Maintainer

Co-author of GitOps certification with
Argo -> http://learning.codefresh.io

About Codefresh (acquired by Octopus Deploy)

Enterprise Ready
Code-to-cloud visibility
across apps and clusters

Continuous Delivery
Progressive delivery without
compromising stability powered
by Argo CD and Argo Rollouts

Modern Deployment
Platform
Support for GitOps environments

Agenda
1. Argo Rollouts and microservices

2. Kubernetes Downward API

3. Argo Rollouts ephemeral labels

4. Cooperation with developers

5. Demo

Argo Rollouts basics

The Argo Family of projects

https://argoproj.github.io/

https://argoproj.github.io/

Argo Rollouts is single service only

Using Argo Rollouts in the real world

Typical application

Complex application

Problem 1 – coordinating two services

Problem 1 – coordinate two services

Solution 1 – coordinate two services

People want to coordinate backend-frontend

How to coordinate two services

https://codefresh.io/blog/multi-service-progressive-delivery-with-argo-rollouts/

https://codefresh.io/blog/multi-service-progressive-delivery-with-argo-rollouts/

Problem 2 – queue/task workers

Problem 2 – queue/task workers

People want to use Rollouts for workers

Argo Rollouts and workers/queues

https://codefresh.io/blog/progressive-delivery-for-stateful-services-using-argo-rollouts/

https://codefresh.io/blog/progressive-delivery-for-stateful-services-using-argo-rollouts/

The Solution

Don’t leave your applications in the dark

Photo by Thanos Pal on Unsplash

https://unsplash.com/@thanospal?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/landscape-photo-of-asphalt-road-_NX-mwCy2C0?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Let your applications know where they are

Photo by Meriç Dağlı on Unsplash

https://unsplash.com/@meric?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/grey-road-during-daytime-xxbh8yBkFVM?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

“Hey – frontend – while you are running in canary
mode make sure to use the endpoint of the canary
backend.

Now that the canary is finished please use the
production backend”

“Hey – worker– you are running in blue/green now.
DO NOT touch the production queue.

Ok. We are ready. Please use the production queue
now”

Make your applications smarter

● Using the Kubernetes Downward API

● Argo Rollouts ephemeral labels

● Auto-reloading of configuration

● Co-operation with developers

The Kubernetes Downward API

Mount your labels as files (or env vars)

https://kubernetes.io/docs/concepts/workloads/pods/downward-api/

https://kubernetes.io/docs/concepts/workloads/pods/downward-api/

Make your configuration smarter

1. Have labels that denote role (stable or canary)

2. Mount these labels to your application

3. Have the application source code read them

4. Do NOT use environment variables. Load from files

Argo Rollouts Ephemeral labels

Let Argo Rollouts instruct the app automatically

Instruct Blue/green app of its
“color”

Instruct Canary application for
its promotion “status”

https://argo-rollouts.readthedocs.io/en/stable/features/ephemeral-metadata/

https://argo-rollouts.readthedocs.io/en/stable/features/ephemeral-metadata/

Full Process

Auto-reloading of Configuration

Make your application smarter

1. The application should read conf from files

2. DB/Queue URL must be configurable

3. Application should auto-reload conf on its own

4. You need to coordinate with your developers for this

Popular languages support

1. Viper Conf (Golang)

2. RefreshScope (Spring/Java)

3. chokidar/config (Node.js)

4. configparser/watchdog (Python)

5. yaml/listen (Ruby)

6. config/watchservice (Kotlin)

7. config/config-watch (Rust)

8. symfony/config-filesystem (PHP)

Coordinate with the Developers

● Photo by Sylvain Mauroux on Unsplash

https://unsplash.com/@alpifree?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/2-men-hiking-on-mountain-during-daytime-WI8phMvAEMI?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Live demo

Demo Time
Argo Rollouts, Downward API, RabbitMQ, golang viper autoreload

https://github.com/kostis-codefresh/argo-rollouts-stateful-example

https://github.com/kostis-codefresh/argo-rollouts-stateful-example

Argo Rollouts and microservices

1. Use Kubernetes Downward API

2. Use Argo Rollouts ephemeral labels

3. Application should read configuration from files

4. Application should auto-reload its configuration

5. Enjoy !

Questions?

kostis@codefresh.io

Argo Rollouts Downward API

mailto:kostis@codefresh.io

