ariga () codefresh

Updating Databases the

GitOps way

ArgoCon US 2023

Your Hosts

=

Rotem Tamir Kostis Kapelonis
CTO Ariga DevRel Codefresh

rotem@ariga.io kostis@codefresh.io

Agenda

e Database migrations and Argo CD

e Existing approaches (init container, jobs, sync hooks)
e What to avoid and best practices

e The Atlas Kubernetes Operator

e Demo

Database upgrades

Past, present, future

A short evolutionary history

of app deployment

[N N J
#!/bin/bash

Do Stuff

Imperative

Manual
(ClickOps)

o000

kubectl apply -f stuff.yaml

Declarative

GitOps

managed by GitOps must have its desired state expressed

Principles

Desired state is in a way that enforces immutability, versioning and retains
a complete version history.

Software agents automatically pull the desired state declarations from the source.

Software agents observe actual system state and
the desired state.

opengitops.dev

guestbook
D D D D I O D
L 4 utOfSyn: (V]

P Healthy (

A short evolutionary
history of db migrations

xXx
kubectl apply -f stuff.yaml GitOps
(nobody is
here)
[N N J
#!/bin/bash DeC|CII‘GtiVe
Do Stuff (some are
here)
Imperative
(most are
here)

Manual (a lot of
organizations)

My app deployments

My db upgrades

Anti-patterns

What NOT to do

Anti-pattern |
Running migrations
manually

Manual DB migrations - avoid

1. Error prone
2. Slowest link in the chain
3. Notrepeatable, not auditable

4. Stressful

Anti-pattern II
Migrations
during
startup

Run migrations on app init - Avoid

1. Attack surface - do not bundle an extra tool and its dependencies in
your dpp container, use separate credentials for DDL and runtime.

2. When migrations fail - reduced capacity, crash-looping

3. Migrations must be synchronized - this means that effectively only

one replica can init at any given time.

Cluster _

What to DO
Automate DB upgrades

Automate DB upgrades

1.

2.

Treat schema versions as artifacts
Handle DB upgrades like infra (or app) changes
Have full control over DB upgrades (and auditing)

DB migrations are a discrete step

Give db upgrades the same respect as app/infrastructure

e

Let’'s discuss

Database
migrations with %

Kubernetes

Options for Kubernetes/Argo CD

1. During application startup

2. Use Init containers (meh)

3. Use Kubernetes Jobs (meh)

4. Use Helm hooks or Pre-sync Argo CD hooks (meh)

5. Use a GitOps Operator for DBs (recommended)

Init—containers

Packaging a CLI tool (not K8s native)
Decoupled from application startup
Failed migrations leave app in unknown state

No visibility/No auditing

Kubernetes Jobs

Packaging a CLI tool (not K8s native)

¥ Decoupled from application startup
Hard to associate/correlate with apps
No visibility on what happened

W Auditing

Helm/Argo CD Hooks

Packaging a CLI tool (not K8s native)
¥ Decoupled from application startup

Issues with re-syncs

No visibility on what happened

May not be stored in Git

People are looking for a K8s native solution

Thread # argo-cd
Yesterday v

> Mi i 2:35 AM ien i g
Mike Hoskins 12 Szymon Bierikowski 10 montl & ¥ A

N so we've got hooks, but also events...probably other ways. wondering if ya'll have a preferred pattern for wiring up deployments, analysis runs,
etc. (e.g. to enrich notifications, orchestrate other deployments, etc). hooks seem easiest, and we already use those for simple things like Hey,
running DB migrations before a deployment starts... but might get cumbersome if what the hook does is very involved or needs We have issues with incorporating migrations
shared/repeated. just starting to investigate getting the argo events into a queue so we can have other services consume/react. pros/cons into ArgoCD Application. We have hasura
/other approaches? TIA!

deployment as our engine, and added a job to
provide the migrations. But we noticed the
: following behavior:
p Navneet singh 7 months ago ¢ 1. Ifwe have 'argocd.argoproj.io/hook’:
Lt 'PostSync' annotation on the job (with

i i ?
iR STCEr DU IBEEALTEA hook-delete-policy Set tO HookSucceeded

have multiple micro-services in an application are - - : =
and are interdependent, each micro-service has a 5 or BeforeHookCreation), Changes in the
DB migration job with metadata.name field. The migration job will be ignored, until the main
ask'is to run migration jobs before the (f d 5

eployment changes. Since hasura
deployment is updated. But, as the jobs have r . . - S .
immutable fields, ArgoCD fails to sync and re-run E I"m Oliver Hookins 3 months ago deployment will rarely change, the
the jobs. e - . & . . - T
S : . “i%¥ 7 Is ArgoCD able to run arbitrary scripts as part migrations never run besides the initial run.
I'm facing the similar issue as mentioned here in v If we don't specify the ook annotation, and

- 100K 3

instead use sync-wave , then it'll correctly try
SESRCRe Lo 2vold conficts’ for the other short-lived (but sequentially important) to apply the job manifest if it changes. But

migration jobs. But the latest versions of

kustomize doesn't allow this, and asks for parts of every deployment of a given service? since it is mostly immutable, it'll fail. This also
metadata.name . happens with sync-options set to

this:thread; andiliried to opply a patch xUse of a deployment, e.g. for database migrations or

metadata.generateName instead of

Is there any other way to do this? Replace=true.

GitOps for databases

Meet Atlas

open-sourced

2021

stargazers

4k

a rl as plele Guides Blog

manage your
database
schema as
code

https://atlasgo.sh | sh

‘ HackerNew:
“Atlas — Terraform but for Database Migrations”

contributors

+65

Projects using on GitHub

2.4k

Used by O
2000+ projects

Introducing the Atlas Operator

Desired schema
kubectl apply -f schema.yaml - is updated

apiVersion: db.atlasgo.io/vlalphal
kind: AtlasSchema
metadata:
name: atlasschema-mysql Inspect
spec: Current
urlFrom: Schema
secretKeyRef:
key: url
name: mysgl-credenti
schema:
sql: |
create table users (
id int not null avto_increment,
name varchar(255) not null,
email varchar(255) unigue not null,

Atlas Operator

5 anchr
primary key (id)
);

_ Migration directory
is updated

ema . yaml

apiVersion: db.atlasgo.io/vlalphal

kind: AtlasMigration
metadata:
name: atlasmigration-mysql

spec:
urlFrom: C'.‘e(;k
secretKeyRef: revisions
key: url status
name: mysqgl-credentials
dir:
configMapRef:
name: "migration-dir"
Atlas Operator

apiVersion: v1

kind: ConfigMap
metadata:

name: migration-dir
data:

20230316085611 : "CREATE TABLE

ALTER TABLE use

ADD

Managed
DB

UMN ...

Features

Native Operator

W Versioned Migrations (atiasmigration)
W Declarative Migrations (atiasschena)

¥ MysQl, Postgres, SQLite, SQLServer...
v

Safety + Policies

Operators for GitOps: Why?

1. Resilience. A reconciliation loop is
more resilient than retrying a script.

2. Semantics. A CRD extends the
Kubernetes API. It's .spec can be
validated and manipulated, it's
.Status can be observed and
consumed.

3. Operations. Codifying domain
expertise and multi step decision
trees.

“We can wrap existing schema
management solutions into
containers, and run them in

Kubernetes as Jobs.

But that is SILLY. That is nhot how we
work in Kubernetes.”

-Viktor Farcic, DevOps ToolKit

Atlas Operator %
Demo

Running Migrations with an Operator

¥ The Kubernetes-native way!

¥ Decouples migrations from your app as a discrete step
W Supports safety features to prevent bad changes

W Exposes a clear migration status/health check

¥ 100% GitOps Automation for your DB schema

The Trinity

A . arlas
(W) codefresh aflascloud
Apps DBsS

Wrapping up

e The Atlas Operators is a Kubernetes native solution for
DB upgrades

e It defines dedicated K8s Resources for migrations

e It's open source!

e Can use either (imperative) or (declarative)

e Treat your DBs as infrastructure

http://github.com/ariga/atlas-operator

Questions?

4| .

atlasgo.io argoproj.github.io crossplane.io

mailto:rotem@ariga.io
mailto:kostis@codefresh.io

Do you want more?

Backup slides

Rollbacks are B.S

e Most tools advocate for pre-planning “down” migrations.
e But practically, NO ONE uses them in production. Why?

e Dealing with partial failures? Really drop?

e The answer: declarative roll-forward

e The future: integration into the operator model

Preview/Validate changes in “dev” DB

Context: docker-desktop tail 1h <shift-c> Clear - e
Cluster: docker-desktop head <c> Copy | Wiedt as Nasssas
User: docker-desktop Im <m> Mark | € N\ 1 ==
K9s Rev: v0.27.4 5m <ctrl-s> Save | I\ / 7 A DY
K8s Rev: v1.27.2 15m <s> Toggle AutoScroll |mena| hea N Ve e
CPU: n/a 30m <f> Toggle FullScreen \V4 A/
MEM: n/a

Logs(manager) [5m]

Autoscroll:On FullScreen: Timestamps: Wrap:0n

2023-08-21T14:58:16Z DEBUG events Created dev database deployment: atlas—-schema-local-sample-atlas—-dev-db {"type
": "Normal", "object": {"kind":"AtlasSchema",K "namespace":"default",6 "name":"atlas-schema-local-sample",6 "uid":"5d181d61-cca6-U
£59-buUllc-376018fc89cd", "apiVersion":"db.atlasgo.io/vlalphal", "resourceVersion":"4355"}, "reason": "CreatedDevDB"}
2023-08-21T14:58:57Z DEBUG events Applied schema {"type": "Normal", "object": {"kind":"AtlasSchema", "namespace":
"default", "name":"atlas-schema-local-sample" 6 "uid":"5d181d61-cca6-Uf59-buUlic-376018fc89cd", "apiVersion":"db.atlasgo.io/vlalph
al", "resourceVersion":"4393"} 6 "reason": "Applied"}

