
Software Testing Foundations

Internal presentation
February 2019

Kostis Kapelonis



Strong foundations?



Things I love

Testing Automation



Things I write



Things I did



Things I blog

http://blog.codepipes.com/testing/software-testing-antipatterns.html



Things I blog

https://news.ycombinator.com/item?id=16894927



Current Work

Docker based CI/CD 
solution for Helm/ solution for Helm/ 
Kubernetes
deployments



Current Work



Current Work

https://codefresh.io/blog/

https://codefresh.io/features/



Part 1 – Airport Management



Airport Management 101

Metrics for effective airport Metrics for effective airport 
management?



Airport Management 101

• Flights on time (100%)
• Bombs/threats/security • Bombs/threats/security 

incidents (0%)



Airport structure



Categories

• People in Airport
• People in Airport that actually travel
• People in Airport that travel today
• People that have checked-in• People that have checked-in
• People that travel domestic/international 
• People that have passed security
• People that are at the gate



Gradual confidence



Airport – Key Points

People pass checks to go to People pass checks to go to 
“higher” categories



Airport – Key Points

The person at the gate just The person at the gate just 
verifies your identify



Airport – Antipattern 1

Single border for all checksSingle border for all checks



Airport – Antipattern 1



Airport – Antipattern 1



Airport – Antipattern 2

One flight per week, therefore One flight per week, therefore 
all security is “easy”!



Airport – Antipattern 2



Part 2 – Software development



Software development

Metrics for effective software Metrics for effective software 
development



Software development

• Features that reach 
production(100%)production(100%)

• Failed deployments (0%)



Categories

• Features that work on my workstation
• Features that work on any workstation
• Features that only work on their own
• Features that work with other features• Features that work with other features
• Features that have memory leaks
• Features that have bugs
• Features with security vulnerabilities



Software Quality



Quality – Key Points

Features are passing multiple Features are passing multiple 
checks (CI/CD pipeline)



Anti-patterns

• Only one test suite (you need 
at least three)

• Manual tests• Manual tests
• Deployments happen once 

per week/month



Some definitions



Testing pyramid



Unit tests

• Require ONLY source code
• Everything that is external is mocked
• Mainly involve business logic testing
• Focus is on a single method/class• Focus is on a single method/class
• Run with xUnit or similar framework
• Easy to setup and run
• Fast (20- 500ms)



Unit test example

Basket basket = new Basket()
basket.add(“Samsung 4k TV”, 600)
basket.add(“Sony PS4”, 300)

basket.getValue() == 900 



Integration/Service/Component test

• Uses a database
• Uses the network to call another component
• Uses a queue/webservice
• Reads/writes files, performs I/O• Reads/writes files, performs I/O
• Needs the application to be deployed (even 

partially)
• Can be complex to setup and run
• Slow (seconds or even minutes)



Integration test example

Basket basket = new Basket(….)
Customer customer = new Customer(…)
customer.checkout(basket, cc, inventory)

Assert invoices, cc charge, inventory subtraction 
etc.



Maven lifecycle



UI test

Anything that works with the DOM of the Web 
page

• Geb
• Protractor• Protractor
• Selenium
• Cypress
• Karma



Following the pyramid 

• We need unit and integration tests and 
UI tests

• Having only one type is an anti-pattern
• Each test suites run in different CI/CD 

phase



Other test categories

• Load testing
• Security testing
• Smoke testing (in production)• Smoke testing (in production)
• Regression testing
• External service provider testing



Part 3 – Software pipeline



Quiz:

How many steps do you need to setup and run 
your whole test suite?



Wrong answers

1. Prepare database
2. Edit settings file
3. Prepare test environment
4. Run tests4. Run tests
5. Cleanup environment



Correct answer

• Before commit: single command to run tests
• After commit: Tests run automatically, with 

no human intervention
• Only CI/CD server is running tests post-• Only CI/CD server is running tests post-

commit



Correct answer



Testing strategy



Testing strategy

• Avoid manual steps/checklists
• Make local testing easy for developers
• CI server should run test for each feature 

branch in a transparent mannerbranch in a transparent manner
• You should also have 

smoke/acceptance/production tests
• The CI/CD server runs tests post-commit, NOT 

humans



End goal

Developers insert their Developers insert their 
features between testing 
phases



Work like this – pipeline is always on



Avoid this – manual processes



Deployment frequency

• Low (once per week or per month)
• Medium (multiple times per week)
• High (multiple times per day)
• Ultra High (fully automated deployments)• Ultra High (fully automated deployments)



Deployment speeds

• Flickr deploys 10 times per day
• Etsy deploys 50 times per day
• AAA gaming company deploys every 15 min
• Amazon deploys every 11.6 seconds• Amazon deploys every 11.6 seconds



Continuous Delivery



Pipeline to production



Preview environments



Part 4 – what to test



Code != file folders



Deployment time



Two bugs after deployment

1. Customers cannot book an apartment
2. Customers get wrong recommendations 

when they browse apartments.
Obviously first one is critical, second one is notObviously first one is critical, second one is not



Code severity

Critical code - This is the code that breaks often, 
gets most of new features and has a big 
impact on application users



Code severity

Core code - This is the code that breaks 
sometimes, gets few new features and has 
medium impact on the application users



Code severity

Other code - This is code that rarely changes, 
rarely gets new features and has minimal 
impact on application users.



Write tests for code that 

• Breaks often
• Changes often
• Is critical to the business



Code coverage is a trap



How much code coverage is enough?



Code coverage everywhere

• It is easy to understand
• It is easy to measure
• There are many tools for measuring it
• Also familiar to other project stakeholders• Also familiar to other project stakeholders
• Beloved by QA departments and managers



I will tell you a secret



I will tell you a secret

A project can be full of bugs and A project can be full of bugs and 
still have 100% code coverage



I will tell you a secret

Do not try to achieve a specific Do not try to achieve a specific 
number (such as 100%)



I will tell you a secret

Bigger numbers require more Bigger numbers require more 
effort (logarithmic?)



I will tell you a secret

Getting from 80% to 100% is Getting from 80% to 100% is 
much more difficult than 0% to 
20%



I will tell you a secret



I will tell you a secret

Increasing code coverage has Increasing code coverage has 
diminishing returns



I will tell you a secret



I will tell you a secret

High code coverage !=High code coverage !=
high code quality



Software developers goals?

• Write code
• Write unit tests
• Write documentation
• Prepare architecture documents• Prepare architecture documents
• Resolve bugs
• Install software packages
• Take part in meetings
• Keep up with latest frameworks



The real goals

• Solve problems
• Offer value to customers• Offer value to customers



Give me a number!



Best code coverage

20% is the magic 20% is the magic 
number



Pareto principle

20% of your code is 
responsible for 80% of your 
bugsbugs



Pareto principle



Pareto principle

Try to achieve 100% coverage 
of your CRITICAL code, (which 
itself is probably 20% of total itself is probably 20% of total 
code)



Part 5 – Greenfield projects



Quiz:

You start working on an unknown project with 
zero tests. Where do you start testing?



Write test for code that 

• Breaks often
• Changes often
• Is critical to the business



How do you find critical code

See what bugs appear in See what bugs appear in 
production



How do you find critical code

…and write unit/integration/ui…and write unit/integration/ui
tests for them



Production bugs

• Have passed all QA gates (since they appeared 
in production already)

• Are great for regression testing



Production bugs

Should only happen once!Should only happen once!



New project – zero tests

• Do NOT start testing code you understand
• Do NOT start testing code that requires easy 

tests
• Do NOT start testing the first folder in your file • Do NOT start testing the first folder in your file 

system
• Do NOT start testing what a colleague 

suggested



New project – zero tests

First test suite should be First test suite should be 
production bugs



Part 6 – How to be a pro



A professional is..

…somebody who knows the …somebody who knows the 
tools of the trade



Read test documentation

• Do not re-invent the wheel
• Do not write new test utilities
• Do not create “smart” test solutions
• Do not copy paste test code• Do not copy paste test code
• Do not write “helper” test methods
• Do not ignore off-the-self test libraries



Show respect

Treat test code like your 
production codeproduction code



Research and learn

Your test framework and its Your test framework and its 
capabilities



Learn about 

• Parameterized tests
• Mocks and stubs (and spies)
• Test setup and tear down
• Test categorization• Test categorization
• Conditional running for tests
• Assertion grouping



Learn about 

• Test data creators
• Http client libraries
• HTTP mock libraries
• Mutation/fuzzy testing• Mutation/fuzzy testing
• Db cleanup/rollback
• Load testing
• Environment launching



Conclusion

• You need multiple test suites (pyramid)
• Features get promoted between phases
• Write tests that add value (critical bugs)
• Run tests automatically in a pipeline• Run tests automatically in a pipeline
• Create preview environments
• Learn your testing tools well
• Treat test code as production code


