Software Testing Foundations

Internal presentation
February 2019
Kostis Kapelonis

Strong foundations?

" - | d

- =

Things | love

—
—

Things | write

Konstantinos Kapelonis
Luke Daley

m MANNING

1 ¥r¥¢ ¥r ¥¢ Changed how we do software testing é’/ﬂ/'

July 26, 2017

Format: Paperback | Verified Purchase

This book was great in teaching how and why to use Spock for testing. We have since built our testing
methodologies around Spock based on technigues learned from this book. Our non-technical staff finds Spock
tests much easier to understand than straight JUnit. This book was very readable and had very good examples.

Things | did

- - . .- r - &

BlizzardCS @ @BlizzardCS - Oct 15 v
These issues have been resolved. Thanks for hanging in there, folks!

BlizzardCS @ @BlizzardC5s

[#Bnet] Update: Some features have been restored but our teams are still
investigating issues affecting chat and Blizzard forums. Thanks for hanging in
there everyone :) twitter.com/BlizzardC5/sta...

Q s) 4 S 0 83 E

BlizzardCS @ @BlizzardC5 - Oct 15 e
[#Bnet] Update: Some features have been restored but our teams are still

investigating issues affecting chat and Blizzard forums. Thanks for hanging in there

everyone :

BlizzardCS @& @BlizzardC5s
[#Bnet] We are currently investigating reports of issues connecting to and
using various sodal features. Thank you for your patience!

Q 9 13 10) 69 M

Things | blog

Software Testing Anti-Pattern List

. Having unit tests without integration tests
. Having integration tests without unit tests
. Having the wrong kind of tests

. Testing the wrong functionality

. Testing internal implementation

. Paying excessive attention to test coverage
. Having flaky or slow tests

- Running tests manually

O 00 ~y O b A N N

. Ireating test code as a second class citizen

[N
=

. Not converting production bugs to tests

=
[EEY

. Treating TDD as a religion

s
P

. Writing tests without reading documentation first

[
A

. Giving testing a bad reputation out of ignorance

http://blog.codepipes.com/testing/software-testing-antipatterns.html

Things | blog

* Spftware Testing Anti-patterns (codepipes.com)

465 points by kkapelon & months ago | hide

o All Users
100.00% Pageviews

pl igation St Y

Pageviews ¥ VS. Selectametric

® Pageviews

40,000

20,000

+ Add Segment

| past | web | favorite | 166 comments

Apr 17,2018 - Apr 23,2018 ~

Day Week Month ﬁ -..

o
Apr1d

Primary Dimension: Page PageTile Other =

Secondary dimension + | Sort Type:

Page

ol 1 Jtesting/software-testing-antipatterns.h

tml

Unique Pageviews
+

46,795 42,508

% of Total: 100.00% % of Total: 100.00%
(46,795) (42,508)

43,884 (33.78%) 40,123 (94.39%)

Apr 20 Apr 21 Apr22 Apr 23
O | advanced B © T | T [T
Avg. Time on Page
Entrances Bounce Rate % Exit Page Value
00:04:28 40,752 90.95% 87.09% $0.00
Awg for View: % of Total: 100.00% Avg for View: Awg for View: % of Total: 0.00%
00:04:28 (0.00%) (40,752) 90.95% (0.00%) 87.09% (0.00%) ($0.00)
00:05:48 39,962 (98.14%) 91.53% 90.15% $0.00 (0.00%)

https://news.ycombinator.com/item?id=16894927

Current Work
“’ Docker based CI/CD
solution for Helm/

codefresh Kubernetes
deployments

Current Work

PI pe' Ine N ame Documentation Support TRIGGER PIPELINE
Release a new update to prod. Must be apdafadsf asdsd....

COMPLETED STEPS START TIME DURATION TRIGGER R
. 12 VIEW YAML 1/8/2018 22:22 10m COMMIT on g Idan's Gitlab - codefresh-io/sf-secrets by 0 Idan Arbel b, DOWNLOADLOG
Pipelines
= [puse]
I ~Initialization 243s PHASE DEPENDENCY
BUILD = BUILD = UNIT =
Kubernetes
2.43s 2435
Helm Releases » GITCLONE L GITCLONE 1 GITCLONE
o « * Clonning main repository o + * Clonning main repository + * Clonning main repository
Docker Swarm
243s 243s
o 2 GITCLONE 0 . GITCLONE ¢ GITCLONE
s ° Clonning main repository » ° Clonning main repository : + ° Clonning main repository
Images
Repositories m
2.43s 2435
Helm Chart @ | <> 5 s gy g
Clonning main repository Clonning main repository
2435 2435
Account Settings > GITCLONE GIT CLONE
. R Clonning main repository . % Clonning mainrepositary
User Settings

W)

codefresh

Current Work

cg; -+ Mmaven (\')

Docker Tutorial | June 20, 2018 COdefI’QSh

Using Docker from Maven and
Maven from Docker

https://codefresh.io/blog/

7
|
\

©) Kostis Kapelonis https://codefresh.io/features/

Part 1 — Airport Management

Airport Management 101

Metrics for effective airport
management?

Airport Management 101

* Flights on time (100%)

* Bombs/threats/security
incidents (0%)

Airport structure

Check-in

Card

Security

Gate

Peop
Peop
Peop
Peop
Peop
Peop

Peop

Categories

e in Airport

e in Airport t
e in Airport t
e that have ¢

nat actually travel
nat travel today

necked-in

e that travel domestic/international

e that have passed security

e that are at the gate

Confidence

Gradual confidence

Gate

Secure

Airport — Key Points

People pass checks to go to
“higher” categories

Airport — Key Points

The person at the gate just
verifies your identify

Airport — Antipattern 1

Single border for all checks

Airport — Antipattern 1

Check-in

Luggage
Security

Airport — Antipattern 1

Kin

Airport — Antipattern 2

One flight per week, therefore
all security is “easy”!

Airport — Antipattern 2

Part 2 — Software development

»-—"'""""

Software development

Metrics for effective software
development

Software development

e Features that reach
production(100%)

* Failed deployments (0%)

‘ ‘ r ‘
=
[/
: \
\
i
)
1

~eatures t
~eatures t
~eatures t
~eatures t
~eatures t
~eatures t

Categories

nat work on my workstation
nat work on any workstation
nat only work on their own
nat work with other features

hat have memory leaks

nat have bugs

~eatures with security vulnerabilities

Confidence

Software Quality

| No regressions

Tested features

Quality — Key Points

Features are passing multiple
checks (CI/CD pipeline)

B =
—

Anti-patterns

* Only one test suite (you need
at least three)

* Manual tests

* Deployments happen once
per week/month

Some definitions

THIS IS TRUTH

Testing pyramid

/ | ntegration\
/ Unit \

Unit tests

Require ONLY source code
Everything that is external is mocked
Mainly involve business logic testing
Focus is on a single method/class
Run with xUnit or similar framework
Easy to setup and run

Fast (20- 500ms)

Bas
bas
bas

et bas
ket.adc

Unit test example

ket = new Basket()
(“Samsung 4k TV”, 600)

ket.adc

(“Sony PS4”, 300)

basket.getValue() == 900

Integration/Service/Component test

Uses a database
Uses the network to call another component

Uses a queue/webservice
Reads/writes files, performs 1/O

Needs the application to be deployed (even
partially)

Can be complex to setup and run

Slow (seconds or even minutes)

Integration test example

Basket basket = new Basket(....)
Customer customer = new Customery...)
customer.checkout(basket, cc, inventory)

Assert invoices, cc charge, inventory subtraction
etc.

compile

process—classes

generate-test—sources

process-—tesSt—Sonrces

generate-test—

Iresources

process—EeSt-resonrces

test-compile

process—-test-classes

EeaE

prepare-package

package

pre—-integration-test

integration-test

post-integraction-test

werify

Maven lifecycle

compile the source code of the project.

post-process the generated files from compilation, for example to do bytecode enhancement on Java classes.
generate any test source code for inclusion in compilation.

process the test source code, for example to filter any values.

create resources for testing.

copy and process the resources into the test destination directory.

compile the test source code into the test destination directory

post-process the generated files from test compilation, for example to do bytecode enhancement on Java classes. Fo
run tests using a suitable unit testing framework. These tests should not require the code be packaged or deployed.

perform any operations necessary to prepare a package before the actual packaging. This often results in an unpack
2.1 and above)

take the compiled code and package it in its distributable format, such as a JAR.

perform actions required before integration tests are executed. This may involve things such as setting up the require
process and deploy the package if necessary into an environment where integration tests can be run.

perform actions required after integration tests have been executed. This may including cleaning up the environment.

run any checks to verify the package is valid and meets quality criteria.

Ul test

Anything that works with the DOM of the Web
Page

* Geb

* Protractor

e Selenium

* Cypress
* Karma

Following the pyramid

* We need unit and integration tests and
Ul tests

 Having only one type is an anti-pattern

* Each test suites run in different CI/CD
phase

Other test categories

* Load testing

* Security testing

* Smoke testing (in production)
* Regression testing

* External service provider testing

Part 3 — Software pipeline

Quiz:

How many steps do you need to setup and run
your whole test suite?

Al

Wrong answers

Prepare database

Edit settings file

Prepare test environment
Run tests

Cleanup environment

Correct answer

Before commit: single command to run tests

After commit: Tests run automatically, with
no human intervention

Only CI/CD server is running tests post-
commit

Dev

% 1 2 3 4
| | 1 | T | | |
s 9 ® ©

Correct answer

Features

2 3
Test Results

Test Results

Testing strategy
oer - [

.(. -
Package
Unit tests
1 Fully
Create Test environment Automated

Integration Tests

Destroy Test environment

Deploy to QA

Ul Tests

Cleanup - -

Testing strategy

Avoid manual steps/checklists
Make local testing easy for developers

Cl server should run test for each feature
branch in a transparent manner

You should also have
smoke/acceptance/production tests

The CI/CD server runs tests post-commit, NOT
humans

End goal

Developers insert their
features between testing
phases

Work like this — pipeline is always on

Avoid this — manual processes

Deployment frequency

Low (once per week or per month)
Medium (multiple times per week)

High (multiple times per day)

Ultra High (fully automated deployments)

Deployment speeds

Flickr deploys 10 times per day

Etsy deploys 50 times per day

AAA gaming company deploys every 15 min
Amazon deploys every 11.6 seconds

Continuous Delivery

% F
() S
E ET_P
o o= =
S5 m 2 2
22 9 " B
< o o v w
C = o O 0O
Iru..u
_ ™M m < n
- -
s E DD DS E - -
% B
1 .
E ET_P
1] > >
S m 2 0O
g B2 18
< o @ vow
S = £ O 0O
I.....
_ ™ mMm = N
T EEEEE e -
pemmsa === _—
4
&
3 w T
=
£ @ ©
o W X oo
teem
5 T e
L...,,.34
o R — -
g T W I I W O O O . ’
% 3
Qo
E ETP
[w = >
= m 9 o
4 @ W @ oW
E - e O 0O
I..ulu
—_ ™ m S un
R R R R R -
T . - - '.
=
i
il |
= w
m no o=
d."lu_
g B L 4
N R TR
c - & O
I.....
o ™M =

L

- o o

-

Eomowmowomow ow

-

Pipeline to production

822w C RESTART

a Fewr seconds sgo I masten TF5ddel] color-coded-pratty
BUILD - TEST EMVIROMMET DEPLOY TO PROD >
if Cloning Main Repository Creating Environment and De_. s Canary Release
Building Docker Image 5" Integration Test 1" Healthcheck

0 Unit Tests " security Scans

Preview environments

5 salesdemocf

Builds Help * UPGRADE * ADD REPOSITORY 3

\4 alexandt

STEPS) | L DN REPOSITORY COMMIT Pi NE
selnlidlEy 19/19 20hoursagoe 5minds & salesdemocf/example-voting-... ¥ new-vote-for-ves/856fcfd == example-voting-app o ~1.11me C'RESTART
LOG
I ._, Initializing Process 6s
DEFAULT » BUILD - SECURITY SCANS > PULL REQUEST >
Cloning main repository... =5 Building Result Image 165 "t ScanResultimage 49s . Create Ephemeral HelmF 7 5
o I) Step type: git-clone 0 # Step type: build o Q Step type: freestyle o ¢ Step type: freestyle

1"y GenerateReportsindexH1 2 Building Vote Image 16s y ScanVotelmage 45s RunPRDVTs 2min30s
o a g Step type: freestyle o # Step type: build o a Step type: freestyle o ¢ Step type: freestyle
14s ScanWorkerlmage 1 min44s

Upload Clair Reports 5s ! Building Worker Image

o Q Step type: freestyle Q Step type: build Q Q Step type: freestyle

Set Pull Request Environ.. = ¢

. Building Test Image 17s
o ﬂ Step type: freestyle Q * Step type: build

Set Pull Request Environ., 25

o Q Step type: freestyle ﬁ

Part 4 — what to test

[1F]

Code !=file folders

apps

auth
channels
mai
permissions
route

rss

settings
themes

url

labs.js
slack js
webhooks.js

xmirpcjs

m D3

im IXR

il Requests
B SimpleFie
il Text

B certificates
il s

B customize
il fonts

B images
s

il pomo

i random_compat
B rest-api

il theme-compat

account
activities

admin
attachments
auth_sources
auto_completes
boards
calendars
commaon

context_menus

custom_field_enumerations

custom_fields
documents
email_addresses

enumerations

Deployment time

Two bugs after deployment

1. Customers cannot book an apartment

2. Customers get wrong recommendations
when they browse apartments.

Obviously first one is critical, second one is not

Code severity

Critical code - This is the code that breaks often,
gets most of new features and has a big
impact on application users

Code severity

Core code - This is the code that breaks
sometimes, gets few new features and has
medium impact on the application users

Code severity

Other code - This is code that rarely changes,
rarely gets new features and has minimal
impact on application users.

Write tests for code that

e Breaks often
* Changes often
e |s critical to the business

Code coverage is a trap

How much code coverage is enough?

Code coverage everywhere

It is easy to understand

It is easy to measure

There are many tools for measuring it

Also familiar to other project stakeholders
Beloved by QA departments and managers

| will tell you a secret

| will tell you a secret

A project can be full of bugs and
still have 100% code coverage

| will tell you a secret

Do not try to achieve a specific
number (such as 100%)

| will tell you a secret

Bigger numbers require more
effort (logarithmic?)

| will tell you a secret

Getting from 80% to 100% is
much more difficult than 0% to
20%

| will tell you a secret

N
7

Effort required

0% 100%
Code Coverage _

rd

| will tell you a secret

Increasing code coverage has
diminishing returns

N

Value from tests

| will tell you a secret

0%

Code Coverage

N

100%

| will tell you a secret

High code coverage =
high code quality

Software developers goals?

Write code

Write unit tests

Write documentation

Prepare architecture documents

Resolve bugs

nstall software packages
Take part in meetings
Keep up with latest frameworks

The real goals

* Solve problems

e Offer value to customers

Give me a number!

Best code coverage

20% is the magic
number

Pareto principle

20% of your code is
responsible for 80% of your
bugs

Pareto principle

Pareto principle

Try to achieve 100% coverage

of your CRITICAL code, (which
itself is probably 20% of total
code)

Part 5 — Greenfield projects

Quiz:

You start working on an unknown project with
zero tests. Where do you start testing?

Write test for code that

e Breaks often
* Changes often
e |s critical to the business

How do you find critical code

See what bugs appear in
production

How do you find critical code

...and write unit/integration/ui
tests for them

Production bugs

* Have passed all QA gates (since they appeared
in production already)

* Are great for regression testing

Production bugs

Should only happen once!

New project — zero tests

Do NOT start testing code you understand

Do NOT start testing code that requires easy
tests

Do NOT start testing the first folder in your file
system

Do NOT start testing what a colleague
suggested

New project — zero tests

First test suite should be
production bugs

Part 6 — How to be a pro

A professional is..

...somebody who knows the
tools of the trad .

]
L]
| ..I
L]
L |
w0

Read test documentation

Do not re-invent the wheel

Do not write new test utilities

Do hot create “smart” test solutions
Do hot copy paste test code

Do not write “helper” test methods

Do not ighore off-the-self test libraries

Show respect

Treat test code like your
production code

Research and learn

Your test framework and its
capabilities

Learn about

Parameterized tests
Mocks and stubs (and spies)
Test setup and tear down
Test categorization
Conditional running for tests
Assertion grouping i

Learn about

Test data creators

Http client libraries
HTTP mock libraries
Mutation/fuzzy testing
Db cleanup/rollback
Load testing
Environment launching]

Conclusion

You need multiple test suites (pyramid)

Features get promoted between phases
Write tests that add value (critical bugs)
Run tests automatically in a pipeline
Create preview environments

Learn your testing tools well

Treat test code as production code

