
Software testing anti-patterns

Java User Group
April 2019

Kostis Kapelonis

Antipattern – common mistake

Things I love

Testing Automation

Things I write

Things I did

Things I blog

http://blog.codepipes.com/testing/software-testing-antipatterns.html

Things I blog

https://news.ycombinator.com/item?id=16894927

Current Work

Docker based CI/CD
solution for Helm/ solution for Helm/
Kubernetes
deployments

Current Work

Current Work

Current Work

https://codefresh.io/blog/

https://codefresh.io/features/

Testing pyramid

Some definitions

Unit tests

• Require ONLY source code
• Everything that is external is mocked
• Mainly involve business logic testing
• Focus is on a single method/class• Focus is on a single method/class
• Run with xUnit or similar framework
• Easy to setup and run
• Fast (20- 500ms)

Unit test example

Basket basket = new Basket()
basket.add(“Samsung 4k TV”, 600)
basket.add(“Sony PS4”, 300)

basket.getValue() == 900

Integration/Service/Component test

• Uses a database
• Uses the network to call another component
• Uses a queue/webservice
• Reads/writes files, performs I/O• Reads/writes files, performs I/O
• Needs the application to be deployed (even

partially)
• Can be complex to setup and run
• Slow (seconds or even minutes)

Integration test example

Basket basket = new Basket(….)
Customer customer = new Customer(…)
customer.checkout(basket, cc, inventory)

Assert invoices, cc charge, inventory subtraction
etc.

Maven lifecycle

Antipattern 1 – Only unit tests

Antipattern 1 – Only unit tests

• Usually in small companies
• Developers who have never seen integration

tests
• Integration tests were abandoned• Integration tests were abandoned
• Test Environment is “hard” to setup

We need integration tests

Antipattern 1 – Solution

• Dockerize your application
• Launch containers after every Pull Request
• Test features BEFORE merging to master
• Anybody should be able to launch all or part • Anybody should be able to launch all or part

of the application with a single command

Antipattern 2 – Only integration tests

Antipattern 2 – Only integration tests

• Usually found in big companies
• “Unit tests are a waste of time”
• People were forced to write unit tests for code

coverage requirementscoverage requirements
• “Unit tests are useless, they never fail”
• “Value comes only from integration tests”

We need unit tests

1. Integration tests are complex
2. Integration tests are slow
3. Integration test are hard to setup and debug

Integration tests are complex

Let’s test a service

• A Java service
• 4 methods
• CC = cyclomatic complexity (number of code

paths)paths)

Only unit tests

• Can write 2 + 5 + 3 + 2 = 12 unit tests
• Get 100% of business logic
• The full application has other more services

Only integration tests

• Should write 2 * 5 * 3 * 2 = 60 tests
• People cheat and only choose some

“representative tests”
• Usually happy path scenarios• Usually happy path scenarios

Hard to test corner cases

• A special scenario in C requires….
• A special scenario in B that requires…
• A special scenario in A

Easy to test corner cases

• With unit tests only a single method is focused
• Corner case can be created on the spot
• Very easy to test

Integration tests are slow

Integration tests are slow

• Two developers Mary and Joe
• Joe writes only integration tests
• Mary writes unit tests PLUS some integration

teststests

Test assumptions

• Each unit test takes 60ms (on average)
• Each integration test takes 800ms (on average)
• The application has 40 services like the one

shown in the previous sectionshown in the previous section
• Mary is writing 10 unit tests and 2 integration

tests for each service
• Joe is writing 12 integration tests for each

service

Speed comparison

• Joe waits 6 minutes after a commit
• Mary waits 1 minute

Integration tests are hard to debug

E-Shop application

• You write tests for the typical eshop
applications

• Customers buy products
• Discounts on prices• Discounts on prices
• Warehouse inventory
• Credit card processing

Result from integration tests

Result from all tests

Anti-pattern 2 - summary

1. Integration tests are complex
2. Integration tests are slow
3. Integration test are hard to setup and debug

Corollary

• We need both unit and
integration tests

• Having only one type is an anti-• Having only one type is an anti-
pattern

Antipattern 3 – Wrong kinds of tests

Amount of tests for each type

• Test pyramid is only a suggestion
• You need to decide what your application is

doing
• Different applications have different needs• Different applications have different needs

Example 1

Example 2

Example 3

Antipattern 4 – Testing the wrong
functionality

Code != file folders

Deployment time

Two bugs after deployment

1. Customers cannot check-out their cart
halting all sales

2. Customers get wrong recommendations
when they browse products.when they browse products.

Obviously first one is critical, second one is not

Code severity

Critical code - This is the code that breaks often,
gets most of new features and has a big
impact on application users

Code severity

Core code - This is the code that breaks
sometimes, gets few new features and has
medium impact on the application users

Code severity

Other code - This is code that rarely changes,
rarely gets new features and has minimal
impact on application users.

Write tests for code that

• Breaks often
• Changes often
• Is critical to the business

Antipattern 5 – Testing internal
implementation

Antipattern 5 – Testing internal
implementation

• Worse kind of tests
• Wasted time the first time they are written
• Wasted time when a new feature is added
• They give a bad name to unit testing• They give a bad name to unit testing
• Closely connected to antipattern 2 (no unit

tests)
• Mostly relevant for unit tests

Rules of unit testing

1. Test behavior and not state

2. Test behavior and not state

3. If this is your first unit test

…test behavior and not state!

Testing state – bad Example

Testing state – bad Example

• Customer type 0 means “guest” and 1 means
“registered user”

• 10 unit tests are written that verify this
particular fieldparticular field

Testing state – bad Example

• Customer type 2 means “affiliate” and 3
means “premium user”

• 20 more unit tests are written that verify this
particular fieldparticular field

Testing state – bad Example

40 tests in total, all looking at this field

New feature from customers

New feature from customers

1. For registered users, their email should also
be stored

2. For affiliate users, their company should also
be storedbe stored

3. Premium users can now gather reward
points.

40 tests are now broken

40 tests are now broken

• This is why some people hate unit tests
• “I try to implement a feature and all tests are

broken”
• “I spend more time with tests than actual • “I spend more time with tests than actual

code”
• Damage is already done

Testing behavior instead of state

Testing behavior instead of state

• Business needs do not affect tests
• At most 10 tests will break (not all of them)
• New fields can be added/removed in

customer objectcustomer object

Antipattern 6 – Paying too much
attention to code coverage

Code coverage is a trap

How much code coverage is enough?

Code coverage everywhere

• It is easy to understand
• It is easy to measure
• There are many tools for measuring it
• Also familiar to other project stakeholders• Also familiar to other project stakeholders
• Beloved by QA departments and managers

I will tell you a secret

I will tell you a secret

A project can be full of bugs and A project can be full of bugs and
still have 100% code coverage

Sample application

100% Coverage

Bug if direction is double the angle

I will tell you a secret

Do not try to achieve a specific Do not try to achieve a specific
number (such as 100%)

I will tell you a secret

Bigger numbers require more Bigger numbers require more
effort (logarithmic?)

I will tell you a secret

Getting from 80% to 100% is Getting from 80% to 100% is
much more difficult than 0% to
20%

I will tell you a secret

I will tell you a secret

Increasing code coverage has Increasing code coverage has
diminishing returns

I will tell you a secret

I will tell you a secret

High code coverage !=High code coverage !=
high code quality

Give me a number!

Best code coverage

20% is the magic 20% is the magic
number

Pareto principle

20% of your code is
responsible for 80% of your
bugsbugs

Pareto principle

Pareto principle

Try to achieve 100% coverage
of your CRITICAL code, (which
itself is probably 20% of total itself is probably 20% of total
code)

Antipattern 7 – Flaky or slow tests

Antipattern 7 – Flaky or slow tests

• Flaky tests are a well known problem
• They hide real bugs
• They make tests untrustworthy
• People start ignoring tests• People start ignoring tests
• Everything goes downhill afterwards

Antipattern 7 – Flaky or slow tests

Antipattern 7 – Flaky or slow tests

• As we go up in pyramid tests become
slow/flaky

• UI tests are notoriously problematic
• Test environments parity• Test environments parity

Antipattern 7 – Solution

• Fix flaky tests
• Isolate them in a different test suite
• Tests should be rock solid
• Failure of test means immediate problem with • Failure of test means immediate problem with

code
• Exclude tests that are broken for a temporary

reason

Antipattern 8 – Running tests manually

Quiz:

How many steps do you need to setup and run
your whole test suite?

Wrong answers

1. Prepare database
2. Edit settings file
3. Prepare test environment
4. Run tests4. Run tests
5. Cleanup environment

Correct answer

• Before commit: single command to run tests
• After commit: Tests run automatically, with

no human intervention

Correct answer

Quiz:

What is the role of the test engineer?
What is the role of the QA department?

Test engineers

• Test engineers should NOT run tests
• Test engineers should write NEW tests and

add them in the automatic test suite
• QA department should NOT run tests• QA department should NOT run tests
• QA department should only evaluate results

from automatic test suites
• CI server actually runs 99% of tests
• 1% of smoke GUI tests run manually

Testing strategy

Antipattern 8 – Solution

• Automate everything
• Make local testing easy for developers
• CI server should run test for each feature

branch in a transparent mannerbranch in a transparent manner
• You should also have

smoke/acceptance/production tests

Antipattern 9 – Not respecting test
code

Antipattern 9 – Not respecting test
code

• Developers pay great attention to main code
• They treat test code as second class citizen
• Test code is hacky and does not follow DRY,

SOLID and KISS principlesSOLID and KISS principles

I will tell you a secret

I will tell you a secret

Test code is as important as Test code is as important as
feature code

Antipattern 9 – Solution

• Create common abstractions for test data
creation

• Centralize common assert code
• Refactor test code when needed• Refactor test code when needed
• Apply KISS, SOLID and DRY to test code
• Do not leave tech debt in test code

Antipattern 10 – Not converting
production bugs to tests

Quiz:

You start working on an unknown project with
zero tests. Where do you start testing?

Write test for code that

• Breaks often
• Changes often
• Is critical to the business

How do you find critical code

See what bugs appear in See what bugs appear in
production

How do you find critical code

…and write unit/integration …and write unit/integration
tests for them

Production bugs

• Have passed all QA gates (since they appeared
in production already)

• Are great for regression testing

Production bugs

Should only happen once!Should only happen once!

New project – zero tests

• Do NOT start testing code you understand
• Do NOT start testing code that requires easy

tests
• Do NOT start testing the first folder in your file • Do NOT start testing the first folder in your file

system
• Do NOT start testing what a colleague

suggested

New project – zero tests

First test suite should be First test suite should be
production bugs

Antipattern 11 – TDD madness

Antipattern 11 – TDD madness

• Test driven development says that tests are
written before code

• Add test, run test, refactor, repeat

I will tell you a secret

You can write tests

• Before the feature implementation
• During the feature implementation
• After the feature implementation
• Never (see “Other” code severity)• Never (see “Other” code severity)

TDD requires a spec

If you have no spec TDD is a If you have no spec TDD is a
waste of time

TDD is not needed

• For research code
• For throw away code
• For quick spikes/POCs
• For weekend projects• For weekend projects
• For startups that pivot all the time

Antipattern 12 – Not reading test
framework documentation

A professional is..

…somebody who knows the …somebody who knows the
tools of the trade

Antipattern 12 – Not reading test
documentation

• Do not re-invent the wheel
• Do not write new test utilities
• Do not create “smart” test solutions
• Do not copy paste test code• Do not copy paste test code
• Do not write “helper” test methods
• Do not ignore off-the-self test libraries

Research and learn

Your test framework and its Your test framework and its
capabilities

Learn about

• Parameterized tests
• Mocks and stubs (and spies)
• Test setup and tear down
• Test categorization• Test categorization
• Conditional running for tests
• Assertion grouping

Learn about

• Test data creators
• Http client libraries
• HTTP mock libraries
• Mutation/fuzzy testing• Mutation/fuzzy testing
• Db cleanup/rollback
• Load testing

Assume that your “smart” solution

…is already invented and …is already invented and
available on the internet

The end

http://blog.codepipes.com/testing/software-testing-antipatterns.html

