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An imaginary story 

…for a supermarket 



I want to buy some toothpaste  
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Supermarket is organized by color (!!!) 
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I would have to ask 

-Where do I find 

toothpaste? 

-“It depends on the 

colour” 
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I would have to ask 

-Why by colour? 

-Because it is very 

easy for us to load 

the shelves 
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WTF? 
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I would then go to a “normal” supermarket 

…where products are grouped by usage 
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The context 
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Java Enterprise Applications 



Java Enterprise applications 
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• Big codebase (200k+ LOC) 

• No developer knows all parts 

• Original authors are not in the team 

• In development for 2+ years 

• In production for 3+ years 



Think the future today 

Numbers vary from 60% to 80% 
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This talk is about 

Organization of Java 

packages by feature. 
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…and not by layer 



Package by layer 
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• Package according to 

business purpose 

• All relevant classes 

inside. 



Agenda – (the maintenance nightmare) 

1. Clients always request features (not layers) 

2. Encapsulation (follow the OOP paradigm) 

3. Enforcing a sound software architecture  

4. Plugin system (lego development) 

5. Project code should grow horizontally (feature 

scope) 
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Part I - Clients think in features 
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“There is a bug in the 

billing application” 



Clients think in features 
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“This report has errors” 



Clients think in features 
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“The budget screen is 

missing a button” 



Clients think in features 
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“When I save a 

document I get an error” 



Clients think in features (never in layers) 
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“I think we should use 

AOP in our persistence 

layer” 
Not! 



A real story 

…with a software company this time 
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A real story 

 Enthusiastic software developer  

 Goes to a new company! 

 Assigned to a project 

 Gets his first issue to work on! 

 “The profits report has a math 

error” 
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Is this easy? 
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• Nothing makes 

any sense 

• Don’t know where 

to start looking 

• Usually you need 

to ask around 



A better alternative 
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• Instant detection of 

affected code 

• Changes contained in 

that package 

• No need to look at the 

rest of the code 

• Isolate junior developers 



Part II - Encapsulation 

02/05/2014 24 

OOP in the package level 



Part II - Encapsulation 
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• All classes are public ! 

• Everything can be 

accessed by everything 

else 



Part II - Encapsulation 
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• DAO is package private 

• Bean could be package 

private as well 

• Only Service is public 



Part III – Good architecture 
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Enforce a valid system design 



Part III – Good architecture 
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A good design 



Part III – Good architecture 

Package by layer can 

easily lead to … 
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Part III – Good architecture 
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A bad design! 



Part IV- Plugin structure 

The Holy Grail of Enterprise applications 
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Part IV- Plugin structure 

 Packages are self-contained! 

 They can be added in other 

projects 

 They can be removed 

 They can be converted to 

jars/wars/ears/OSGI etc. 
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Part V- Project size 
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Part V- Project size 
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 Assume you have two enterprise projects 

 The second could be just a newer version 

  First project is 100.000 lines of code 

  Second project is 1.000.000 lines of code 

  How do they look in Eclipse? 



Package by Layer 
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Project 1 Project 2 



Package by Layer – A big project 
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• Thousands of “actions”, 

DAOs 

• Usually alphabetically sorted 

• Very hard to work with 

• Cause for code duplication 



Package by feature 
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Project 1 Project 2 



Closing remarks 

Next time you add a new class to a 

package named: 

 controllers 

 dialogs 

 actions 

 DAO 
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Think Again! 



Closing remarks 

 There is also a hybrid 

approach. First level is by 

feature and second layer 

is by layer 

 Also avoid package by 

pattern (shown on 

picture) 
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Discussion 
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