
Java Package by Feature

Java Day 2014, Athens Greece

Kostis Kapelonis (Trasys)

02/05/2014 2

An imaginary story

…for a supermarket

I want to buy some toothpaste

02/05/2014 3

Supermarket is organized by color (!!!)

02/05/2014 4

I would have to ask

-Where do I find

toothpaste?

-“It depends on the

colour”

02/05/2014 5

I would have to ask

-Why by colour?

-Because it is very

easy for us to load

the shelves

02/05/2014 6

WTF?

02/05/2014 7

I would then go to a “normal” supermarket

…where products are grouped by usage

02/05/2014 8

The context

02/05/2014 9

Java Enterprise Applications

Java Enterprise applications

02/05/2014 10

• Big codebase (200k+ LOC)

• No developer knows all parts

• Original authors are not in the team

• In development for 2+ years

• In production for 3+ years

Think the future today

Numbers vary from 60% to 80%

02/05/2014 11

This talk is about

Organization of Java

packages by feature.

02/05/2014 12

…and not by layer

Package by layer

02/05/2014 13

• Package according to

business purpose

• All relevant classes

inside.

Agenda – (the maintenance nightmare)

1. Clients always request features (not layers)

2. Encapsulation (follow the OOP paradigm)

3. Enforcing a sound software architecture

4. Plugin system (lego development)

5. Project code should grow horizontally (feature

scope)

02/05/2014 14

Part I - Clients think in features

02/05/2014 15

“There is a bug in the

billing application”

Clients think in features

02/05/2014 16

“This report has errors”

Clients think in features

02/05/2014 17

“The budget screen is

missing a button”

Clients think in features

02/05/2014 18

“When I save a

document I get an error”

Clients think in features (never in layers)

02/05/2014 19

“I think we should use

AOP in our persistence

layer”
Not!

A real story

…with a software company this time

02/05/2014 20

A real story

 Enthusiastic software developer

 Goes to a new company!

 Assigned to a project

 Gets his first issue to work on!

 “The profits report has a math

error”

02/05/2014 21

Is this easy?

02/05/2014 22

• Nothing makes

any sense

• Don’t know where

to start looking

• Usually you need

to ask around

A better alternative

02/05/2014 23

• Instant detection of

affected code

• Changes contained in

that package

• No need to look at the

rest of the code

• Isolate junior developers

Part II - Encapsulation

02/05/2014 24

OOP in the package level

Part II - Encapsulation

02/05/2014 25

• All classes are public !

• Everything can be

accessed by everything

else

Part II - Encapsulation

02/05/2014 26

• DAO is package private

• Bean could be package

private as well

• Only Service is public

Part III – Good architecture

02/05/2014 27

Enforce a valid system design

Part III – Good architecture

02/05/2014 28

A good design

Part III – Good architecture

Package by layer can

easily lead to …

02/05/2014 29

Part III – Good architecture

02/05/2014 30

A bad design!

Part IV- Plugin structure

The Holy Grail of Enterprise applications

02/05/2014 31

Part IV- Plugin structure

 Packages are self-contained!

 They can be added in other

projects

 They can be removed

 They can be converted to

jars/wars/ears/OSGI etc.

02/05/2014 32

Part V- Project size

02/05/2014 33

Part V- Project size

02/05/2014 34

 Assume you have two enterprise projects

 The second could be just a newer version

 First project is 100.000 lines of code

 Second project is 1.000.000 lines of code

 How do they look in Eclipse?

Package by Layer

02/05/2014 35

Project 1 Project 2

Package by Layer – A big project

02/05/2014 36

• Thousands of “actions”,

DAOs

• Usually alphabetically sorted

• Very hard to work with

• Cause for code duplication

Package by feature

02/05/2014 37

Project 1 Project 2

Closing remarks

Next time you add a new class to a

package named:

 controllers

 dialogs

 actions

 DAO

02/05/2014 38

Think Again!

Closing remarks

 There is also a hybrid

approach. First level is by

feature and second layer

is by layer

 Also avoid package by

pattern (shown on

picture)

02/05/2014 39

Discussion

02/05/2014 40

