
 Enterprise versus Open Source Development

Policy

Kostis Kapelonis

Athens Greece, December 2013

13/12/2013 2

Question

What is the best Methodology

 for developing software

Applications?

13/12/2013 3

Question

What is the best Methodology

 for developing software

Applications?

most appropriate

13/12/2013 4

Enterprise Software

13/12/2013 5

Open Source general purpose software

13/12/2013 6

Embedded software

13/12/2013 7

Medical Software

13/12/2013 8

Military Software

13/12/2013 9

Nuclear Reactor Software

13/12/2013 10

Enterprise versus Open Source

Roles and privilages

The Team

Open source roles (privilages)

 Client is everybody

 Developer could be anybody

13/12/2013 11

Open source roles (involvement)

 Different level of involvement

 Author, Committer, Lieutenant, Contributor, Dictator

13/12/2013 12

Sends

 a patch

Fix issues

New features

Regular Contributor

Full time

13/12/2013 13

Enterprise Team

Unified Team

13/12/2013 14

Enterprise versus Open Source

Who approves what

Features

Open source stakeholders

 There is no “hard” timetable

 There is no “hard” set of features

13/12/2013 15

“Client”

“Developer”

Features

Features

13/12/2013 16

Open source forks

Feature wars

MySQL vs MariaDB

Emacs vs XEmacs

Debian vs Ubuntu

WebKit vs KHtml

XFree vs X.org

LibreOffice vs OpenOffice

Xwiki vs FossWiki

Enterprise stakeholders

 Stakeholder is the client. Ultimate power on features

 Client proposes features, clients approves features (same entity)

13/12/2013 17

Client

Developer

Features

13/12/2013 18

Enterprise versus Open Source

Choosing The base line

Changesets

Enterprise stakeholders

 Opensource loves the latest and greatest version (constant change)

 Enterprise loves backwards (and forwards) compatibility

13/12/2013 19

“Please verify on

latest version”

Regression

Testing

A Patch comes

in for an older version

13/12/2013 20

Enterprise versus Open Source

Different development

mindset

Other stuff

Other differences

Release early, release often

 It is done when it is done

Show me the code

 If it compiles, ship it

Users are lusers

Cathedral versus Bazaar

13/12/2013 21

13/12/2013 22

Enterprise versus Open Source

Trust on people

Biggest difference

Enterprise stakeholders

 Opensource must deal with the crowd (also malicious commits)

 Enterprise has controlled teams

13/12/2013 23

Unknown

Handpicked

Open Source Enterprise

13/12/2013 24

Enterprise versus Open Source

Trust no one (until they

get in)

Border Control

13/12/2013 25

Enterprise versus Open Source

Either you are trusted or not

13/12/2013 26

Enterprise versus Open Source

Safe area

Unsafe area

Pull request

Pull request

Commit access The internet

13/12/2013 27

Enterprise versus Open Source

One big barrier (In or out)

13/12/2013 28

Enterprise versus Open Source

Layers of trust of code

(not people)

A different approach

13/12/2013 29

Enterprise versus Open Source

The airport approach

13/12/2013 30

Enterprise versus Open Source

Gate Scanner Card Check-in

Code quality certainty

 Different level of code trust

 Code starts as unsafe and reaches production status

13/12/2013 31

Commit

Unit test

Integration Test

Manual test

Production

13/12/2013 32

Enterprise versus Open Source

Tools and support

In action

Branch model

13/12/2013 33

A successful

Git model

Layers of trust

13/12/2013 34

Development

Staging

Production

Manual (PM)

Semi- Automated (Testers)

Fully automated (everybody)

All commits go on

dev. Should

compile.

Test environments

use staging.

Tags come from

Production

Build jobs

 Developer build (almost every commit) – unit tests

 Integration tests (every 30 minutes)

 Sonar build (once a day)

 Promotion job (for testers)

 Staging environments (multiple)

 Release jobs

 Completely automated for day usage

13/12/2013 35

Build server

Developer responsibilities

 Commit on “dev” branch. Should run unit tests first locally

 Pull/Merge as needed freely (but only on dev branch)

 Multiple developers can work on same feature branch

 Monitor build status and fix broken builds

 All branches are remote (no local code)

 “Code that is not committed does not exist”

 Code review (before merging with “dev”)

 Commit messages have JIRA number

 Feature branches can be long or short

 For long lived – pull from “dev” daily

13/12/2013 36

Developer

QA responsibilities

 Runs tests on “Frozen” staging

 Promote a build from dev to staging (build job)

 Approve staging to PM (so that it can be released)

 During releases there is no promotion (hot fixes go on staging)

 Regression testing with maintenance branch

13/12/2013 37

Tester

PM responsibilities

 Ranks features

 Approves features (by the client)

 Approves late release stages

 Approves Tags and releases from production branch

13/12/2013 38

Project

Manager

Code review of (merged) feature

13/12/2013 39

JIRA - GIT

13/12/2013 40

13/12/2013 41

Bad commits

Oops – bad commit

Crap

13/12/2013 42

Bad commits

Git reset to previous commit

Back to

Normal

13/12/2013 43

Enterprise versus Open Source

Comparison

Simplicity in day to day operations

13/12/2013 44

Pull, push,

merge,

commit,

squash,

rebase

Open Source Enterprise

Pull, push,

merge,

commit

Simplicity in Build server setup

13/12/2013 45

Custom

scripts, new

jobs for pull

requests

Open Source Enterprise

Usage out

of the box

Simplicity in Build server load

13/12/2013 46

Jobs O (n)

(n = open PR)

Builds O(n2)

(n = commits)

Open Source Enterprise

Jobs O (1)

Builds O(n)

(n= commits

to dev)

How branches are treated

13/12/2013 47

1 Branch = 1

feature =

1contributor = 1

pull request

Open Source Enterprise

Only final result

matters (all

features

integrated)

Stability of workspace

13/12/2013 48

Your branch

may have

been rebased.

Checkout

again!

Open Source Enterprise

You can

work on any

branch

Dude, wtf?

Co-operation among developers

13/12/2013 49

External

regular

contributors

difficult

(unless

isolated work)

Open Source Enterprise

Multiple

external

developers

on same

branch

13/12/2013 50

Enterprise versus Open Source

Use the open source approach

for open source software

Conclusion

Use the Enterprise approach

for Enterprise software

13/12/2013 51

The future

Where we want to go

13/12/2013 52

The future

Software Pipelines

Thank you

13/12/2013 53

13/12/2013 54

Enterprise versus Open Source

Backup Slides

13/12/2013 55

Enterprise versus Open Source

Valid commit

Invalid commit

Build (success)

Build(fail)

Feature finished (ok)

Feature finished (not ok)

“fix build” commit

Merging 4 open pull requests

13/12/2013 56

Open Source (4 PRs) Enterprise (4 PRs)

Time

16 Builds (!!!) 4 Builds

13/12/2013 57

Merging 4 open pull requests

If 6 open pull requests = 36

Builds???

4PRs =16 builds

Another scenario

 2 Regular committers on the same

company

 1 external contributor on different country

 3 open pull requests (1 for each)

 3 unrelated features that share code

 Scenario = the first committer changes

the method signature of a module used

by the other two.

13/12/2013 58

Merging 3 open pull requests with errors

13/12/2013 59

Open Source Enterprise

Time

9 Builds, 2 fixes 4 Builds, 1 fix

