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Java packages by Layer
 Dao, GUI, WEB
 Model, View, 

Controller
 Client, Server, 

Database
 Backend, Front-end
 Service (!!!)
 Managers, Actions, 

Flows e.t.c



You are doing it wrong! 

(At least in my humble opinion!)



We are used to layers
 Programmers see layers everywhere
 We like to think of abstractions
 We might change the GUI layer (do we?)
 We might change the ORM (do we?)
 It helps during initial stages
 I admit personally that I have coded like this
 Most straightforward way to code
 It is not helpful during maintenance



Think the future today!

 Numbers vary from 60% to 80%



Package by feature
 Think in business 

terms
 Assume you are a 

client
 Accounts, billing, 

security, budget, 
reports, users, 
documents,

 Everything inside!



Think “maintenance”

1. Clients always request features (not layers)
2. Project grows horizontally (feature scope)
3. Encapsulation (good OOP)
4. Plugin system/Lego like development
5. Good architecture (Quality wise)



1. Clients think in features



The usual scenario
 You are a senior Java developer
 You go to a NEW company/project
 You are assigned your first issue:
◦ “There is a bug in the billing calculation”
◦ “This report is wrong”
◦ “The budget screen is missing a button”
◦ “The document is not saved”
◦ “Change the colour in the login screen”



Is this easy?
 You open Eclipse to 

 see the code
 NOTHING makes 

any sense to you
 Where do you 

start?
 Usually you ask 

another developer



A better alternative
 Instant detection of 

affected code
 Changes contained 

in the package
 No need to look at 

the rest of the code
 Great for isolating 

junior developers



2. Project size



Growing project code size
 Assume you have two enterprise projects
 The second could be just a newer version
 First project is 100.000 lines of code
 Second project is 1.000.000 lines of code
 How do they look in Eclipse?



Package by layer
Project 1 Project 2



Package by layer
 Thousands of 

“actions”, DAOs
 Usually 

alphabetically 
sorted

 Very hard to work 
with.

 Cause for code 
duplication



Package by feature

Project 1 Project 2



3. Class encapsulation

 OOP in package level



All classes are public
 Service uses DAO
 Service uses Bean
 DAOs are public!
 Junior programmers 

could go directly to 
DAO instead of 
using the service



Package private visibility
 DAOs are package 

private
 Beans could be 

package private as 
well.

 Everybody is forced 
to use the Services



Good architecture



Bad architecture



4. Plugin structure for free

 The holy grail of Enterprise Applications



Reuse code easily
 Packages are self-

contained!
 They can be added 

in projects
 They can be 

removed
 They can be 

converted to 
jars/wars/ears/OSGI 
e.t.c



5. Avoiding package cycles
 A cycle happens when package A uses 

package B and package B uses package A
 Also transitive A  B  C  A→ → →
 Package cycles are BAD!
 They make refactoring difficult.
 Once must change ALL packages at ONCE.
 Detected by common quality tools Jdepend, 

Sonar, CAP e.t.c. 



Real world example



My second complaint



Design pattern overload
 Normally a programmer should face a 

SPECIFIC problem, consult the GOF book 
and THEN apply the pattern.

 In reality programmers look at the book and 
find cool design patterns they want to add 
in their CV.

 Singletons are evil (look it up)
 Also factories are obsolete (see dependency 

injection)



Why this is bad
 Similar as before
 Delegates, 

factories, builders, 
proxies.

 These have NO 
meaning for the 
actual code.



An alternative approach
 Just append the 

pattern to the class 
name.

 Still name the 
packages by layer



The End
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