
Kostis Kapelonis (kkapelon@gmail.com)

Java packages by Layer
 Dao, GUI, WEB
 Model, View,

Controller
 Client, Server,

Database
 Backend, Front-end
 Service (!!!)
 Managers, Actions,

Flows e.t.c

You are doing it wrong!

(At least in my humble opinion!)

We are used to layers
 Programmers see layers everywhere
 We like to think of abstractions
 We might change the GUI layer (do we?)
 We might change the ORM (do we?)
 It helps during initial stages
 I admit personally that I have coded like this
 Most straightforward way to code
 It is not helpful during maintenance

Think the future today!

 Numbers vary from 60% to 80%

Package by feature
 Think in business

terms
 Assume you are a

client
 Accounts, billing,

security, budget,
reports, users,
documents,

 Everything inside!

Think “maintenance”

1. Clients always request features (not layers)
2. Project grows horizontally (feature scope)
3. Encapsulation (good OOP)
4. Plugin system/Lego like development
5. Good architecture (Quality wise)

1. Clients think in features

The usual scenario
 You are a senior Java developer
 You go to a NEW company/project
 You are assigned your first issue:
◦ “There is a bug in the billing calculation”
◦ “This report is wrong”
◦ “The budget screen is missing a button”
◦ “The document is not saved”
◦ “Change the colour in the login screen”

Is this easy?
 You open Eclipse to

 see the code
 NOTHING makes

any sense to you
 Where do you

start?
 Usually you ask

another developer

A better alternative
 Instant detection of

affected code
 Changes contained

in the package
 No need to look at

the rest of the code
 Great for isolating

junior developers

2. Project size

Growing project code size
 Assume you have two enterprise projects
 The second could be just a newer version
 First project is 100.000 lines of code
 Second project is 1.000.000 lines of code
 How do they look in Eclipse?

Package by layer
Project 1 Project 2

Package by layer
 Thousands of

“actions”, DAOs
 Usually

alphabetically
sorted

 Very hard to work
with.

 Cause for code
duplication

Package by feature

Project 1 Project 2

3. Class encapsulation

 OOP in package level

All classes are public
 Service uses DAO
 Service uses Bean
 DAOs are public!
 Junior programmers

could go directly to
DAO instead of
using the service

Package private visibility
 DAOs are package

private
 Beans could be

package private as
well.

 Everybody is forced
to use the Services

Good architecture

Bad architecture

4. Plugin structure for free

 The holy grail of Enterprise Applications

Reuse code easily
 Packages are self-

contained!
 They can be added

in projects
 They can be

removed
 They can be

converted to
jars/wars/ears/OSGI
e.t.c

5. Avoiding package cycles
 A cycle happens when package A uses

package B and package B uses package A
 Also transitive A B C A→ → →
 Package cycles are BAD!
 They make refactoring difficult.
 Once must change ALL packages at ONCE.
 Detected by common quality tools Jdepend,

Sonar, CAP e.t.c.

Real world example

My second complaint

Design pattern overload
 Normally a programmer should face a

SPECIFIC problem, consult the GOF book
and THEN apply the pattern.

 In reality programmers look at the book and
find cool design patterns they want to add
in their CV.

 Singletons are evil (look it up)
 Also factories are obsolete (see dependency

injection)

Why this is bad
 Similar as before
 Delegates,

factories, builders,
proxies.

 These have NO
meaning for the
actual code.

An alternative approach
 Just append the

pattern to the class
name.

 Still name the
packages by layer

The End

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

