Package by feature

Kostis Kapelonis (kkapelon@gmail.com)

My constant Java complaint

Java packages by Layer

> Dao, GUI, WEB o
> Model, View, < (= sample
Controller m” = beans
> CIient, Server, [J] AccountDAO java
Data base 9] Eillithddr?ssDAD.java
J] LoginDAD java
> BaCkend, FrOnt-end [J] MonthlyReportDAC java
> Service (!!!) e
> Managers, Actions, (= web
Flows e.t.c > & actions

b= controllers
b= views

You are doing it wrong!

. (At least in my humble opinion!)

We are used to layers

> Programmers see layers everywhere

» We like to t
> We might c
> We might c

nink of abstractions
nange the GUI layer (do we?)

nange the ORM (do we?)

> It helps during initial stages

> | admit personally that | have coded like this
> Most straightforward way to code

> It Is not helpful during maintenance

Think the future today!

Resources spent on initial development vs. maintenance

> Numbers vary from 60% to 80%

Package by feature

> Think In business

° & ihug terms
< (= sample2 > Assume you are a
¥ [accounts client

J] AccountBean.java

_ > Accounts, billing,
J| AccountDAQ java

security, budget,

J] AccountService java I‘epOI‘tS, users,
& billing documents,
& reports >~ Everything inside!

b= users

Think “maintenance”

1. Clients always request features (not layers)
2. Project grows horizontally (feature scope)
3. Encapsulation (good OOP)

4. Plugin system/Lego like development

5. Good architecture (Quality wise)

1. Clients think in features

The usual scenario

> You are a senior Java developer
> You go to a NEW company/project

> You are assigned your first issue:
- “There is a bug in the billing calculation”
> “This report is wrong”
- “The budget screen is missing a button”
> “The document is not saved”
- “Change the colour in the login screen”

Is this easy?

‘?E?gr

v & hug > You open Eclipse to
v ?:;ﬂa‘; see the code

v = dao > NOTHING makes

J] AccountDAD java

any sense to you

J] ApplicationDAQ java > Where do you

] BillingAddressDAoO java

1J| BudgetDAD java Sta rt?

e A0 e > Usually you ask

] MonthlyReportDAO java another deve|oper

J| OrderDAD java

J] ProductDAD java

J] UserDAQ java

J| YearlyReportDAD java

A better alternative

> Instant detection of

* & hug affected code
v & sample2 > Changes contained
¥ (= accounts In the package

J] AccountBean.java

| > No need to look at
J| AccountDAQ java

the rest of the code

4] AccountService java > Great for isolating
= billing junior developers
= reports

= users

2. Project size

mMiN34A31 FEDE3IACION

EHAALT CLASE
L ISEA YELERIAR CLASE
SHARGOTICLASS BATTLEEHF
BATTLECRUZER

TIMAEH CLASS
FRIGATE TROLIGAN CLASS
ARMORED CRUSER

MORSHM CLASE
CAFRER

——
TERALZA CLASS
SCOUTIESSAULT SHF
By lakom Ly

TIGARAACLASS
ATTACK CAUCER LESHATH CLATS
=COUT

SHATARA CLASE
WARCRUISER

WALEMZHACLASS COMMAND EHP
Byfldeenls

Growing project code size

> Assume you have two enterprise projects
> The second could be just a newer version
> First project is 100.000 lines of code

> Second project is 1.000.000 lines of code
> How do they look in Eclipse?

Package by layer

Project 1 Project 2
¥ = gr v (= gr
¥ [= jhug = = jhug
¥ = sample = = sample
P = beans P = beans
P = dao I (= dao
P = ejb b= ejb
v = web = = web
b = actions I (= actions
b = controllers I = controllers

P = views b= views

Package by layer

¥ = qgr
< = jhug
¥ [= sample
b (= beans
= = dao
J] AccountDAD java
J] ApplicationDAQ java
] BillingAddressDAoO java
1J| BudgetDAD java
J| DepartmentDAD java
J] LoginDAD java
1J] MonthlyReportDAD java
J| OrderDAD java
J] ProductDAD java
J] UserDAQ java
J| YearlyReportDAD java

> Thousands of
“actions”, DAOs

> Usually
alphabetically
sorted

> Very hard to work
with.

» Cause for code
duplication

Package by feature

Project 1 Project 2
- r
v = < ?;jhug
v & jhug ¥ [= sample2
7 = SEF‘I"‘IFJ|EE b Eazcnlunts
P = accounts - an::
[bi”iﬂg = categories

(= inventory
& orders

= merchants
b= users =+ orders
(= security
b= users

3. Class encapsulation

NOTICE

Private Property

If you can read this, you are
within range

DilaAriiter

> OOP In package level

All classes are public

= = sample

> = beans > Service uses DAO
e e e > Service uses Bean
[Departmen’-cBean.java > DAOS are p u bl iC !
| orderBean.java -
?Useraean.java > Jun|0r prOgrammerS
= = dao .
J] AccountDAD java COUId gO dlreCtIy tO

J) BudgetDAQ java DAO instead of

| DepartmentDAO java .]
5 ordernAO jave using the service
4] UserDAOD java
v (= ejb
] AccountService java
[J] BudgetService java

J| DepartmentService java

| OrderService java

B UserService.java

Package private visibility

> DAOs are package

° & ihug private
v = sample2 > Beans could be
¥ & accounts package private as

AccountBean.ava
L / well.
J| AccountDAQ java

- Everybody is forced

J] AccountService java tO use the SerV|CeS
= billing
(= reports

b= users

Good architecture

A

o

s —) v
yd N\

[Bean Bean

p—

Bad architecture

4. Plugin structure for free

s‘ <

R

h» The holy grail of Enterprise Applications

Reuse code easily

¥ = gr
¥ [= jhug
¥ = samplez
I [= accounts
(= adrin
= hilling
(= categories

(= inventory

= merchants
= orders

(= security
I [= users

> Packages are self-
contained!

> They can be added
In projects

> They can be
removed

> They can be
converted to
jars/wars/ears/OSGI
e.t.c

5. Avoiding package cycles

> A cycle happens when package A uses
package B and package B uses package A

> Also transitive A- B->-C - A

> Package cycles are BAD!
> They make refactoring difficult.
> Once must change ALL packages at ONCE.

> Detected by common quality tools Jdepend,
Sonar, CAP e.t.c.

Real world example

Cycles

[summary] [packages] [cycles] [explanations]

org.dbunit

org.dbunit.ant

org.dbunit.assertion

org.dbunit.database

org.dbunit.database.search

org.dbunit.database.statement

org.dbunit.operation
org.dbunit.dataset.datatype
org.dbunit.dataset
org.dbunit.dataset.datatype

org. dbunit.util
org.dbunit.database
org.dbunit.util

org.dbunit.dataset.datatype
org.dbunit.dataset
org.dbunit.dataset.datatype

org.dbunit.util
org.dbunit.database

org.dbunit.util
org.dbunit.database
org.dbunit.util

org.dbunit.database
org.dbunit.util
org.dbunit.database

My second complaint

Design pattern overload

> Normally a programmer should face a
SPECIFIC problem, consult the GOF book
and THEN apply the pattern.

> In reality programmers look at the book and
find cool design patterns they want to add
in their CV.

> Singletons are evil (look it up)

> Also factories are obsolete (see dependency
Injection)

Why this is

v = web
= controllers
= delegates
¥ = facade
(= builders
= factories

¥ = proxies

B singletons

bad

> Similar as before

> Delegates,
factories, builders,
proxies.

> These have NO
meaning for the
actual code.

An alternative approach

¥ [accounts > JUSt append the
4] AccountBean.java pattern to the class
J| AccountDAO java name.

T Accoumodegere e AN

J| AccountFactory.java
packages by layer

J| AccountManager.java

J] AccountProxy.java

J] AccountService java

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

