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Abstract

This document describes the development of a software driver.The driver controls an
adapter which can access CompactFlash cards.The adapter is attached to an embedded
system (the Dil/NetPC board) featuring a x86 processor.The operating system used is
the Linux kernel.The text focuses both on hardware and software.
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Chapter 1

Introduction

The Dil/NetPC DNP/1486-3V board from SSV Systems (http://www.ssv-embedded.de/)
is a powerful, low consumption, x86 platform that can be used as an embedded solu-
tion for various projects, although it is clearly developed for networking with Ethernet
networks.

It is based on the SC410 processor from AMD (486 compatible), packs 8MB RAM,
and features an Ethernet port allowing it to connect to common local area networks.It
has also other advanced features like a watchdog timer that can be used for maximum
reliability.

Some key features are:

• AMD 32-bit SC410-33 Low Power CPU (486/33MHz)

• 8 MB DRAM Memory

• 2 MB FLASH Memory with Boot Block

• 10BASE-T Ethernet Interface

• COM1 Serial Port with TTL Levels, 16550 compatible

• 20-Bit General Purpose Parallel I/O

• I/O Extension Bus with programmable Interrupts

• 64-pin JEDEC DIL-64 Connector with 2.54mm Centers

1.1 The problem

Development for the Dil/NetPC entails several limitations for programmers accustomed
to conventional desktop programming.Apart from the fact that code must be first down-
loaded to the board , the major shortcoming of the system is the limited flash memory
storage.There is no visual output display so debugging must be performed through the
serial port,via the network or even with specialized programs (e.g. gdb server/client).

The flash chip on the board is used as a hard disk for the system.It contains the
bootable image of the OS which is then decompressed into RAM memory in order for
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CHAPTER 1. INTRODUCTION 6

the system to function.In the case of Linux, the compressed image1 accounts for at least
1.7MB2.This leaves about 300kb on the the flash for programs written by the developer.

This might seem enough space for some small test programs.However,as soon as the
programmer starts writing applications that involve saving data on the “disk” this space
is inefficient.For example a monitoring program which stores large text logs that follow
the actions of the system as time progresses, needs moderate to huge amounts of disk
space.

S.S.V. systems sells a high end version of the DNP/1486-3V called the ADNP/1486-
3V3.This board is the enhanced version of the low end model, featuring not only ad-
ditional hardware components, but also double RAM and FLASH memory chips .This
means that the available flash memory is now 4MB and since the OS data are the same
there is more room for custom applications.

However this doesn’t solve the space requirements for log keeping.Buying a new
board and disposing the old one is not an easy option too.It would be ineffective to buy
a new board only for the flash memory, since we though that the other components of
the low end board were good enough(the system RAM and the CPU).Another solution
should be found and it should be somehow an extension of the DNP/1486-3V.

1.2 The proposed solution

It was decided to attach an external memory storage component on the system that
would be used for data and custom programs only.The main operating system would
still boot from the on-board FLASH chip.Ideally the space provided, should be easily
upgraded allowing for the ever-increasing memory requirements of the future.

Thus,some kind of “adapter” would be attached on the board which would inter-
face with common consumer memory chips (smartmedia,compactflash,memory sticks
e.t.c).Therefore,increasing the capacity of the external memory would be as simple as
removing the old memory component and replacing it, with one having larger capacity.

In this text we document the development of a device driver used by the Dil/NetPC
to interface with such an adapter.The driver is necessary for the operating system to
detect and natively use the available space.The programmer would then access this extra
space using the filesystem layer of the operating system.

1.3 Intended audience

Readers of this text are expected to be competent in the C language and user-space
application programming for the GNU/Linux systems.Some basic knowledge of hardware
terms like low/high signal,bus, address/data bits is required.Knowing how to compile
and upgrade Linux kernels and modules is essential too.

1.4 Contributions

During development we implemented:
1minimal filesystem + essential utilities compressed with gzip -9
2including a generic Linux kernel
3ADNP is advanced DNP
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1. A stable character driver for the Dil/NetPC.Reading it, returns the status of the
built-in dip-switch and writing it, changes the status of the on-board LEDS.

2. A stable virtual block driver which controls 64kbs of memory.A filesystem can be
created on it and then mounted.It acts essentially as a ram-disk.

3. An unstable block driver which controls Compactflash cards.Data corruption is
minimal, but evident though.

1.5 Organization of this report

This document describes the development process in a chronological way.Each chapter
is based on the previous one, so they should be read preferably in order.

Chapter 1 is the introduction you are now reading. Chapter 2 is a list of hardware
and software terms the reader should be familiar with.Chapter 3 describes the reasons
we selected Compactflash cards instead of the other popular FLASH format,Smartmedia
cards.Chapter 4 explains in detail the preparation of the Dil/NetPC board, before the
actual development can start.This has nothing to do with the driver itself,but it is
essential for the development process.

Chapter 5 is theoretical.It provides a high-level view of the Linux kernel and soft-
ware modules which represent device drivers.Chapter 6 describes some technical details
for the compilation of Linux kernel modules.The example module is a character driver
for the Dil/NetPC.Chapter 7 introduces the generic Linux kernel interface for writing
block device drivers.The example here is a ram-disk.Chapter 8 which consists the gist
of the document, describes the actual development of the real driver, which controls
Compactflash cards.It ties together the ATA/IDE protocol,the LBA addressing mode,
and the chip select concept.The final chapter (9) focuses on testing and troubleshooting
for this driver.



Chapter 2

Definitions

The reader of this text is expected to be familiar with the following terms.The terms
are referenced many times inside the document so they are considered important for the
full understanding of the process.

driver The final code this text describes is commonly called a driver.A driver is a special
program that enables the operating system to interface with a specific hardware
device.

Figure 2.1 shows the components of a system in hierarchical way.Drivers form
a layer between the operating system and the devices.They are essentially the
“border” between hardware and software.

Figure 2.1: The different layers of a system

Most hardware vendors ship their products with drivers, so that customers can
take advantage of new devices even if their operating systems didn’t support these
devices in the first place.Since this is a custom solution, there is no driver for

8



CHAPTER 2. DEFINITIONS 9

this purpose.Attaching the adapter onto the Dil/NetPC is the first part of the
work,and writing the driver is the second.

smartmedia Smartmedia cards are memory storage cards developed by Toshiba.They
are thin and small with capacities up to 128MB.They are used primary in cameras
and PDAs as storage.They don’t feature a micro-controller so low level program-
ming1 is required for the interface.

The forum responsible for the specifications resides at http://www.ssfdc.or.jp/english/.
The original name of Smartmedia card was solid-state floppy disk card, or SSFDC.

compactflash This is another type of memory cards.Compactflash technology was in-
vented in 1994 by Sandisk.It became very popular as a method to store data for
cameras and PDAs.

Unlike Smartmedia cards,Compactflash cards include a micro-controller which per-
forms many of the low level input/output routines,and so programming for them
is easier.They also support the ATA/IDE protocol used for hard disks so they can
replace easily a hard disk where reliability is important(they don’t contain any
movable parts since they use flash memory too).

They also come in greater capacities than Smartmedia.At the time of writing,
cards with 512MB or even a GB are becoming popular among consumers.

sector Measurement unit used mainly for hard disks, but also for other devices that
transfer data in large chunks.A sector is the smallest addressable amount of
data.Almost always,a sector holds 512 bytes of data.All data transfered to/from a
hard-disk are just a series of sectors eventually.

block A block device is a device which stores data in fixed-size chunks of data called
blocks.Hard disks are the dominant block devices.Blocks can be any number of
even sectors.There are blocks of 1024 bytes(2 sectors),4096 bytes(8 sectors) and
so on.Blocks do not have any physical meaning.They are used to group sectors.A
critical property of a file-system is the block size used.

C/H/S The physical geometry of a hard-disk or an IDE/ATA compatible device(like
a compactflash).Three numbers that stand for cylinders,heads and sectors respec-
tively.A sector is characterized by these 3 numbers uniquely.The capacity of a hard
disk is determined by these numbers.This geometry isn’t physical on compactflash
disks since they emulate the geometry of a hard-disk and use these numbers only
for backwards compatibility.

LBA An alternative method to address a sector.LBA stands for logical block address-
ing.All sectors of the device are considered sequential and are assigned a unique
number which can be used for identification.The process which converts the C/H/S
numbers to LBA is called LBA translation or LBA mapping.

The LBA method was invented in order to overcome some limitations of the C/H/S
addressing scheme,and to allow for a unified way to access sectors.

register A register is a small set of data/control bits.Writing to registers of a device
allows the programmer to transfer data to the device or give it commands,while

1dealing with signals
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reading from registers results in querying the device or transferring data from
it.Common registers have 8,16 or 32 bits width, but larger sizes like 64 bit have
already appeared.

signal A signal can have many meanings in science.In this context we mean the voltage
level of a single pin/bus bit.A signal is either low or high.Asserting a signal means
activating it,and depending on the situation it can mean setting it high or low.We
can measure a signal by attaching a probe on the cable that carries it or on a pin
where it terminates.Laboratory equipment such as oscilloscopes and logic analyzers
are used for this purpose or even multi-meters for simple situations.

ATA/IDE IDE stands for Integrated Drive Electronics.It is an interface specification
used mainly by hard disk drives.It defines a method to communicate with a device
that supports it,through a bus/channel.There are several revisions and enhanced
versions (like EIDE for Enhanced ide) which specify greater speeds of data transfer
and/or power saving options.

ATA which stands for Advanced Technology Attachment is the name the ANSI
group uses for the same technology.The forum that maintains the specifications
resides at http://www.t13.org/.

A Compactflash disk supports the ATA/IDE protocol.This means that compact-
flash disks can accept the ATA/IDE commands and respond as if they were hard
disks.



Chapter 3

The compactflash solution

Originally, Smartmedia cards would be used as a storage component.After considering
the disadvantages of this technology,and comparing it to Compactflash ,we decided to
begin development on the latter.

3.1 Smartmedia versus Compactflash

Both Smartmedia and Compactflash cards use FLASH memory.FLASH memory has
some important advantages such as high reliability and no loss of data during power-
offs.There are no moving parts like hard disks,making them less error-proven and more
power friendly.Both cards are also used with cameras and other consumer media devices,
which means that have been accepted by vendors and consumers.

Two were the main reasons for selecting Compactflash over Smartmedia.

• Smartmedia cards have a maximum capacity of 128MB.Compactflash cards on the
other hand,support much larger capacities.Cards with 1GB capacity have recently
appeared.This gives the Dil/NetPC board many capabilities.For example it could
be used to store logs 24/7/365,a function which requires vast amounts of storage
space.128 MB of space might seem a small limitation today,but tomorrow it could
be a major drawback.

• Smartmedia card are “raw” memory cells.There is no intelligence built into them.A
programmer wishing to interface with a Smartmedia card,has to work on the lowest
level.That is, asserting and de-asserting signals,watching for timing constrains and
so on.The programmer is also responsible for managing the bad blocks,a difficult
and complicated task.Compactflash cards consist of the flash memory where data is
stored but also an on-board smart controller.The controller takes care of the above
issues.It manages the memory chips1 so it can offer the programmer a higher level
of functions and methods.

Additionally, Compactflash cards can emulate the common ATA/IDE protocol
which is simple and well documented.The programmer only writes commands in
the registers of the controller,and then just waits for the results.The actual work
of fetching/storing the data to/from the specified address ranges is done by the
controller.

1even supports ECC in hardware
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CHAPTER 3. THE COMPACTFLASH SOLUTION 12

3.2 The adapter from elektor

To this purpose, we ordered a CompactFlash adapter from the Elektor electronics
magazine(http://www.elektor-electronics.co.uk/).Issue No.316 December 2002 describes
the procedure to build and use such an adapter.The adapter is attached on a Compact-
Flash card and “exports” a 32 ATA/IDE pin-out2.Sample code is supplied too (can be
downloaded for free from the website),although it implements the connection between
the adapter and a development 8051 board.We would use it for x86 and the Linux
kernel,so the code should be ported to this platform.

2like the one used for floppy disks



Chapter 4

Preparing the environment

The Dil/NetPC kit from SSV includes the board itself,a power cable,a serial cable for
the connection with the host computer and a CD-ROM with software and documenta-
tion.There is also printed documentation, mainly selected tutorials from the CD.

One could ask for a crossover network cable since the board features an Ether-
net port,which could be used for development with a stand-alone host.Otherwise the
board should be connected to the local network of the host computer.In either case
a TCP/IP(Ethernet) connection should be available between the board and the host
computer.

4.1 Host computer configuration

The whole development process will follow the typical host/target idea.Code will be
compiled on a conventional computer called host,and then the compiled binaries/objects
will be downloaded to the target platform (in this case the Dil/NetPC) via the serial
cable.

The host computer is a modern x86 workstation.It should run one of the many
GNU/Linux distributions.Most “development” packages should be installed.The kernel
sources should be downloaded from www.kernel.org and then installed and configured,
preferably in the home directory of a user.Stable version 2.4.17 should be downloaded.Do
not download a newer version since it should match the kernel running on the Dil/NetPC
board.

The minicom terminal application should be available and also the lrzsz package
which supplies command line tools for zmodem/xmodem/ymodem file transfer.Running
minicom with -s command switch loads the configuration parameters screen where the
settings of the following section should be entered.

The typical GNU tool chain should also be installed.The gcc compiler and make
utility are required.The GNU debugger gdb can also be installed for some user-space
test applications.

Warning:Even if your distribution comes with a newer gcc3.x branch this should
not be used.Instead the previous gcc stable version (2.95) should be downloaded and
installed.The 3.x branch compiles broken kernels if their version is lower than 2.4.21
(which applies in our case).Such kernels and/or modules compile successfully and appear
to function properly but after a while they segfault and the system throws a kernel panic.

An editor which syntax highlighting capabilities such as vim or Emacs will be of

13
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great assistance.The installation of all development documentation of the distribution
(man pages/Howtos/faqs/tutorials) is recommended.

During the earliest stages of development the host computer was running Man-
drake 8.2.After some time it was upgraded to Debian stable (Woody) but any modern
GNU/Linux distribution should fit.

4.2 Preparing the Dil/NetPC board

The Dil/NetPC board has a version of DOS pre-installed.The first step should be the
installation of a network-aware Linux system on it.There is excellent documentation on
the SSV CD-ROM that comes bundled with the board, in the form of PDF files1.The
procedure is documented there in details,so we will only outline it here.

4.2.1 Installing Linux on the Dil/NetPC

Data is downloaded onto the flash memory (2MB) of the board through the serial ca-
ble.One end should be connected on the board itself and the other on a free serial
port of the host computer(COM1/COM2 or /dev/ttyS0 and /dev/ttyS1 under Linux
terminology).The connection is then initiated with the use of a terminal program.Most
GNU/Linux distributions ship Minicom for this purpose.Hyperterminal can also be used
on Microsoft Windows computers.The appropriate settings are shown in table 4.1

Setting Value
Serial device /dev/ttyS0 (or /dev/ttyS1)
Bps 115200
Databits 8
Parity None
Stopbit 1
Hardware Flow control None
Software Flow control None

Table 4.1: Minicom settings

During power-on,booting messages should now be shown into minicom.The boot pro-
cedure stops when it reaches the DOS prompt.To prepare the board for data download
type:

C:\>md linux
C:\>cd linux
C:\LINUX\>rb

The last command (RB=receive bytes) initiates data transfer using the YMODEM
protocol.The board is now waiting for data.Pressing Ctrl-A and then S in minicom
should show a file browser.Navigate to the SSV CD-ROM and select all files that reside in
\Dnpx\dossd\Precfg11\ directory (using the space key).Pressing the enter key should
start the actual downloading which might take some time.

1opened by Acrobat reader from www.adobe.com



CHAPTER 4. PREPARING THE ENVIRONMENT 15

This directory contains four files that form a complete Linux operating system.This
is the 11th configuration which comes with kernel 2.4.17

start.bat A DOS batch file.It is a simple script used to boot Linux.It runs loadlin.exe
with the needed parameters.

loadlin.exe A small executable which can boot Linux over DOS.It needs a Linux kernel
and a Linux filesystem image

zimage This file contains a compiled Linux kernel.It is the result of “make zImage”
command inside the kernel source tree.

rimage.gz A compressed (with gzip) filesystem image.This contains all the files apart
from the kernel of the operating system.Any changes that need to be permanent
should be stored here.

Typing now “start” at the command prompt should boot Linux.The kernel mes-
sages(the console) should appear in the minicom window.If everything is OK the familiar
login prompt will eventually appear.

One more step is required to make Linux launch automatically on boot.Otherwise
each time the board boots, the “start” command should be executed from the linux
directory.Reboot so that DOS loads again and type the following commands.

C:\>type autoexec.bat

@ECHO OFF
PROMPT $P$G
PATH C:\

C:\>echo "CD LINUX">>autoexec.bat
C:\>echo "START">>autoexec.bat
C:\>type autoexec.bat

@ECHO OFF
PROMPT $P$G
PATH C:\
CD LINUX
START
C:\>

Autoexec.bat is a batch file(script) that DOS runs on boot.So as soon as DOS finishes
booting it will enter the linux directory and execute the start.bat batch file.

4.2.2 Configuring the network on the Dil/NetPC

During the actual development, code will be simply transfered over FTP on the board.There
is no need to download it permanently on the FLASH memory.The Dil/NetPC has
TCP/IP networking capabilities via the on-board Ethernet port.The fact that the band-
width it provides is 10Mbps and that it only supports half-duplex transmission,has little
impact on the development process.
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Setting up the network on Dil/NetPC might seem as easy as running the ifconfig
command.This is not the case.Since each time Linux loads from the compressed filesys-
tem image,after next boot any network settings will be lost.To solve this, rimage.gz must
be accordingly modified so that network setup will be permanent.

Copy the rimage.gz from the \Dnpx\dossd\Precfg11\ directory, to the hard disk of
the host computer.Then type the following commands on the host computer.

$gunzip rimage.gz
$su
#mkdir /mnt/image
#mount -t minix rimage /mnt/image

Now in the /mnt/image directory there is the filesystem of the Dil/NetPC.Enter the
etc/config directory there, (that is /mnt/image/etc/config) and edit at least the ipaddr
file,the netmask and the broadcast file which contain the IP,netmask and broadcast
address respectively.The above values should be given to you by your network adminis-
trator.If you are on a local network with no internet access you can use any of the IP
ranges shown in table 4.2

Start End prefixed form
10.0.0.0 10.255.255.255 10/8 prefix
172.16.0.0 172.31.255.255 172.16/12 prefix
192.168.0.0 192.168.255.255 192.168/16 prefix

Table 4.2: RFC-1918 assigned private network addresses

When finished, the compressed image should be recreated.

#cd -
#umount /mnt/image
#exit
$gzip -9 rimage
$

Finally the resulting rimage.gz should be downloaded again on the FLASH memory
of the Dil/NetPC.The procedure was described in the previous section.

This concludes the software setup of Dil/NetPC.The next section describes the pro-
cedure used to attach the CompactFlash adapter on the Dil/NetPC external bus.

4.3 Hardware setup

The I/O expansion bus of the Dil/NetPC allows for the communication with external
devices or memory chips.The bus is 8 bits wide and supports 2 chip-select signals (there
is a separate chapter for chip selection).This means that up to two I/O devices can
communicate with the Dil/NetPC through the bus2.

Figure 4.3 shows the bus-related pins that were used.For this design we did not use
interrupts,although the Dil/NetPC supports up to 5 interrupts3.

2without the use of additional hardware
3there are 5 interrupt pins
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Pin(s) Name Direction Description
48 CS1 Output Chip select signal number 1.
51 IOW Output The write signal
50 IOR Output The read signal
63-56 D0-D7 Input/Output The actual data bits
55-52 A0-A3 Output The address bits

Table 4.3: I/O Dil/NetPC pins

The CompactFlash adapter it connected to the I/O bus of the Dil/NetPC with an
IDE cable.We obtained an IDE cable from a PC floppy drive.Contrary to the hard drive
IDE cables, this type has only 34 pins (2 rows of 17) instead of 40 pins (2 rows of
20).This presents no problem since only the necessary pins would be used.

One end of the cable is directly attached to the adapter and the other must be
soldered on the Dil/NetPC.There is plenty of room on the board for this purpose.

Figure 4.1 shows the IDE connector as viewed from above.The IDE cable should be
attached on “pins” soldered on the Dil/NetPC board with this orientation.

Figure 4.1: IDE pinout (34 pins)

4.3.1 Connecting the Dil/NetPC I/O bus with the IDE cable

Finally, (and this is where the main soldering takes place) the above IDE pins must be
connected to the appropriate Dil/NetPC pins.Any loose or wrong connection here will
make further development impossible.Figure 4.4 shows which pins of the Dil/NetPC and
of the IDE cable should be connected together.Negative names suggest inverted signals.



CHAPTER 4. PREPARING THE ENVIRONMENT 18

Dil/NetPC Directly IDE cable
Pin function Pin number connected to Pin number Pin function
Chip Select 1 48 = 2 -CS1
I/O Channel Ready 49 X
I/O Read 50 = 15 -RD
I/O Write 51 = 13 -WR
Address bit 3 52 X
Address bit 2 53 = 30 A2
Address bit 1 54 = 32 A1
Address bit 0 55 = 34 A0
Data bit 7 56 = 19 D7
Data bit 6 57 = 21 D6
Data bit 5 58 = 23 D5
Data bit 4 59 = 25 D4
Data bit 3 60 = 27 D3
Data bit 2 61 = 29 D2
Data bit 1 62 = 31 D1
Data bit 0 63 = 33 D0

Table 4.4: IDE to Dil/NetPC connections
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Conceptual Model

In a perfect world drivers would not exist.Devices would be simply connected to comput-
ers and modern operating systems would instantly detect them.While this dream seems
to be a reality for some plug-and-play devices,in most cases just plugging the device does
nothing.There are many connection methods (serial, parallel, USB1/2, firewire, irda,
ATA/IDE, PCMCIA e.t.c),many operating systems and multiple versions/varieties of
them, which means that a hardware vendor cannot provide software and support for all
possible cases.Instead hardware components include only drivers for popular consumer
operating systems,and even then,they must be upgraded from time to time1.The fact
that some hardware vendors don’t comply fully with the established standards,or when
they comply, they “add” their own proprietary extensions makes drivers a necessity.

In the embedded market, things are no different.Most software produced is part of a
custom solution which is developed with reliability and small footprint in mind,but not
portability.This is our case too.Although the Dil/NetPC runs Linux, a modern 32-bit
operating system with TCP/IP stack , basically it consists of the AMD SC410 CPU, a
serial port and an Ethernet port.This forces us to use the raw bus of the CPU itself.The
driver we are about to discuss runs on this platform only.

The adapter from the elektor magazine was meant to be used with the 8051 proces-
sor.Boards with this kind of processor do not use2 an operating system.The sample code
we had in our hands was very simple.It demonstrated how to read and write a com-
plete sector (512 bytes) from the CompactFlash and nothing more.We needed to adapt
and extend this code for the Linux kernel.Thus,the development of the driver focuses
on two different areas.The high-level software interface with the Linux kernel which is
generic,and the low-level hardware interface to the SC410 bus and the CompactFlash
adapter.

Throughout the development process we followed the procedures and practices de-
scribed in the excellent reference book “Linux device drivers 2nd edition” by Alessandro
Rubini and Jonathan Corbet.It is an invaluable source of information since it deals
with most technical issues of driver development.What follows, is a brief introduction to
Linux modules.The first chapters of the book describes the topic in greater depth and
detail.

1or when the next version of the OS comes out
2 there are of course schedulers available
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5.1 Linux kernel modules

Drivers for the Linux kernel belong to the so-called “kernel space”.This contrasts con-
ventional applications which run in the user space.The kernel space is the part that
the kernel itself and it’s drivers occupy.Directly below comes the actual hardware the
kernel runs on, and directly above comes the user-space where high-level applications
reside.User applications can send and receive data to/from kernel-space with system
calls.System calls are special functions which form the “bridge” between kernel and user
space.3Figure 5.1 shows the Linux kernel architecture.

Figure 5.1: Internals of the Linux kernel

Writing a driver for a device means essentially providing a “mapping” between the
system calls and the device.What happens when a user application opens the device for
reading?What does “read” mean for the device?These questions must be answered by
the driver.

Because drivers are parts of the actual running kernel someone would thought that
the development cycle would involve the reboot of the system with the new kernel, each
time a new version was introduced.This may be the case for the core kernel itself but
not for the drivers.The Linux kernel supports loadable modules.These are object files
which contain extra code and can be loaded or unloaded during runtime.When loading a
module, the kernel gains extra abilities (the functions the module implements).Unloading

3Passing from user-space to kernel-space is also triggered by hardware interrupts.
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a module when it is no longer needed has the opposite effect.This allows for rapid
development cycles with one running kernel.

Loadable modules are conventional object files (.o suffix) which are loaded and
unloaded with the insmod and rmmod command respectively.The lsmod command
shows current loaded modules.Most Linux drivers are modules,but not all modules are
drivers.There are modules which provide pure software functions.Essential and popu-
lar modules are included in the kernel distribution files which cover a wide range of
hardware devices and software protocols.

There is a well defined programming interface for writing modules.It a set of prede-
fined functions which must be implemented by the programmer.The programmer has a
wealth of programming structures and functions to use and extensive debugging capabili-
ties.It is worth noticing however,that the glibc functions the programmer is accustomed
with,are not available because modules are part of the kernel space.Every available
programming structure is defined in the kernel development headers.For example the
common “debugging” function printf is not available.The kernel defines it’s own printk
which redirects it’s output to the system console/logs.

5.2 Types of Linux drivers

Currently there are three types of linux drivers.Drivers for character devices,block de-
vices and network devices.Consequently there are char modules,block modules and net-
work modules.

These names imply the type of device, the driver controls.The devices are categorized
into:

char devices Char devices are the most common devices.They are the devices which
are accessed in a sequential way.Reading means receiving a stream of characters
one after the other, and writing means sending a stream of characters one after
the other.Typical char devices are modems,serial ports or terminals.The filesys-
tem representation of a char device is a special character file in the /dev/ direc-
tory.Therefore the command

echo "ATZ">/dev/ttyS0

sends the ATZ string to the modem connected to the first serial port.

block devices Block devices are the devices which transfer data in large chunks.They
are the devices which can hold a filesystem and can be accessed with the mount
command.The dominant block devices are hard disk drives or even CD/DVD
drives.They are represented which a special block file in the dev directory.The
command

dd if=/dev/hda of=boot.sect bs=512 count=1

saves the first 512 bytes(the boot sector) of the first hard disk to a file named
boot.sect.Block devices are partition-able so there are separate /dev/ files for each
partition.Thus /dev/hda1 is the first partition of the first block device, /dev/hdc5
is the fifth partition of the third block device and so on.



CHAPTER 5. CONCEPTUAL MODEL 22

net devices Network devices are almost always physical network cards.Naturally, pro-
gramming for network devices is a bit different from char and block devices.Functions
which act when a packet is sent/received via the card,must be implemented.Since
there are no explicit read/write system calls for network devices, there is no special
/dev/ file for a network driver.The Linux kernel assigns symbolic names to network
cards (e.g. eth0,eth1) but these are virtual.Generally, network drivers behave in a
special way,unlike the above two categories which are mostly predictable.

The driver we document here is a block driver.

5.3 Hardware access

Any driver of the above categories (which controls a physical hardware device) must at
some point communicate with the device it is responsible for.

Accessing the hardware is accomplished by the use of special hardware functions.These
functions (also exist in user-space) read or write a single byte to/from a I/O port of the
processor address space.The most basic are:

unsigned inb(unsigned port);
void outb(unsigned char byte,unsigned port);

There are also functions which read/write a word(16bits) instead of a byte or even
a long word (32bits) but we didn’t use them.Notice that the arguments of outb() are in
the opposite order than the DOS function with the same name.Much time and effort
were wasted until we realized this fact.

The port argument is 16bits in the x86 address space.Usually it is a hex value which
maps to a register/memory pointer of the CPU.It can be any value in the range of
0x0-0xFFFF (or 0-65535).



Chapter 6

Programming a module

To familiarize ourselves with module programming, and since the first months of devel-
opment the hardware wasn’t ready (the adapter),we decided to implement a char driver
for the Dil/NetPC.

The Dil/NetPC includes 8 Light emitting diodes (or LEDS) which can be used as
output and a dip switch which can be used as input of a single byte (8-bit).The idea
was that “reading” the device would return the status of the dip-switch(which could be
set by just flipping the switches) and “writing” the device would switch on some LEDS
according to the input byte.

The full source code of this char driver is included in appendix C.As we found
out later,block drivers are more complicated that char drivers.There are however,some
common concepts and issues between them.Compiling and running kernel modules can
be tricky (not the case with user-space).Our experiences are outlined in the following
sections.

6.1 Programming environment

Before we discuss the source code of the module,there are some important programming
notes that need to be considered.

6.1.1 Module versions

Linux kernel modules are always compiled against a specific kernel version.Attempting
to load a module with different version than the running kernel will make insmod abort,
with a clear message stating the version mismatch.There are ways to compile modules
which can run with multiple kernel versions,or even to force modules to run on a kernel
with different version,but these methods are not recommended.

This is why it is imperative that all driver modules should be compiled against
kernel 2.4.17, since this is the version Dil/NetPC runs on.Therefore, downloading and
unpacking the 2.4.17 kernel source (from ftp.kernel.org or mirrors) is essential for the
development process.Contrary to common belief, the sources should be unpacked in some
directory other than /usr/src/linux, since this directory holds the kernel source of the
workstation itself.A home directory of a user is the ideal place.Even if the distribution of
the workstation is old enough, to claim that it runs 2.4.17, most times the kernel sources
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it includes are altered and heavily patched1.So in any case, the pure kernel source should
be used.

6.1.2 Compilers and kernel headers

The second issue that needs to be addressed when compiling modules is the com-
piler.First of all, because the kernel code makes heavy use of GNU extensions,the GNU C
compiler (gcc) should be used.A compiler that is only ANSI compliant is not an option.

The real problem however,is the version of gcc.The Linux kernel and gcc are two
independent projects which publish new versions as they see fit.There are combinations
of kernel and compiler versions,which produce broken kernels or do not compile at all.In
our case, gcc version 2.95 was used.Version 2.96 which comes with some versions of the
Redhat distributions was not tested.And most importantly, gcc versions 3.x are known
to produce broken kernels prior to 2.4.21.

An important step is pointing the compiler to the kernel source tree that should
be used for the compilation process.Thus,when the compiler comes across a line with
#include <linux/fs.h> for example, it should include the file of the downloaded kernel
source tree and not the header file that resides in /usr/src/linux/include/linux/fs.h
which belongs to the kernel source tree of the workstation.This is accomplished by
the KERNELDIR directive which defines the location of the kernel headers.It should
be passed as an argument to gcc/make or even better, defined in a custom Make-
file.Appendix C contains a sample Makefile which shows this approach,and also some
other required compiler directives for kernel modules.

6.2 Source code description (char driver)

The module is implemented in a single .c file.The code has mainly 4 sections.The first are
the functions init module() and cleanup module() which define what happens when the
module is loaded and unloaded respectively.These functions are required and together
they form the simplest module.Next comes the special structure file operations which
defines what are the capabilities of the driver.It contains a pointer to each function the
device supports.Functions that have the NULL pointer or are not mentioned at all,are
not supported.In our case we only support the “standard” open/release/read/write func-
tions but not poll,seek e.t.c.The third part are the implementations of the above func-
tions.Notice that the prototype of each function is strictly defined by the kernel inter-
face.Finally there are the hardware functions get switches() and light led() which are
called from “read” and “write”.

6.2.1 Major and minor numbers

One common concept between block and char drivers are major and minor numbers.A
major number is a number from 0 to 255 (8-bit) which is unique for every type of
device.The minor number is an 8-bit number which is unique for every device present
of the same type.These numbers are separate for block and char devices.For example,
the loopback interface has major block number 7,and the mouse/joystick has major
char number 13.If a computer had two joysticks/mice, they would have the same major
number(13) but a different minor.

1Mandrake for example may call the package kernel-2.4.17-mdk
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So a single device is characterized by a combination of major and minor number
(if it is the only device of this type,the minor number is usually 0).Currently allocated
numbers, for both block and char devices, are listed in /Documentation/devices.txt
file in the source tree of any Linux kernel.Normally, someone should contact the kernel
maintainers and inform them that he/she would need a number for a new driver.This pre-
vents clashes between programmers who write drivers independently at different places
of the globe.There are however, major numbers specifically chosen for development and
experimental purposes.For our design, we used char major number 254.The whole range
240-254 is assigned as “local/experimental use”2.Therefore, our driver will use 254 (ma-
jor) and 0 (minor).

The function register chrdev() attempts to register a major number for use by the
driver.This function accepts three arguments and is called from init module() which
is the entry point of the module.The first argument is the major number requested
from the kernel (254 in our case),the second is the name of the driver (as shown from
cat /proc/devices command) and the third is a pointer to the structure file operations
which was described previously.As expected,inside cleanup module(), which is the exit
point of the module, the function unregister chrdev() is called.This releases the major
number passed as the first argument.

6.2.2 Indexed access to registers

The LEDS and the dip-switch are assigned to “Port A” and “Port B”.The respective
registers are PADR and PBDR3.These registers are accessed however,with the so-called
indexed mode.The SC410 features two global access registers with names CSC_INDEX
and CSC_DATA4,which are used as intermediate storage.Accessing a specific register,is a
two step process.First the hex address of the register must be written to the global index
register(CSC INDEX) and then the actual data value should be written/read to/from
the global data register(CSC DATA).Here is an example:

/* Writing hex value temp to register TARGET */
cli();
outb(TARGET, CSC_INDEX);
outb(temp, CSC_DATA);
sti();

/* Reading register SOURCE to variable result*/
cli();
outb(SOURCE, CSC_INDEX);
result=inb(CSC_DATA);
sti();

The cli() and sti() functions disable and enable interrupts.They are essential since
the index and data registers are global,and so we must be certain that no other pro-
cess accesses them apart from us.The Linux kernel provides a better approach for dis-
abling/enabling interrupts.

2This is not the only range of this type
3with hex addresses 0xA9 and 0xA8
4and hex addresses 0x22 and 0x23
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The port A/B registers themselves use indexed access.The respective index registers
are PAMR(hex 0xA5) and PBMR(hex 0xA4).Switching on a led or reading the dip-
switch status is now a four step process.Two to select the port with indexed access and
another two steps to read/write to the selected port with indexed access.

6.2.3 Data transfer to/from user-space

In the “read” function of the driver, where the string representing the dip-switch sta-
tus is being copied to a character array/pointer,there is an important function called
copy to user().This function replaces memcpy() when memory bytes need to be copied
from kernel space to user-space.

There is also a function which performs data transfer the opposite way called copy from user()
which again replaces memcpy().The reason these two functions exist is that kernel-space
and user-space are so different that one cannot simply “copy” bytes between them.This
kind of transfer is cross-space,something that memcpy() cannot handle.

6.3 Testing the char driver

The usage of the driver is simple.After compiling the module on the workstation it
should be transfered to the Dil/NetPC board with FTP.Then it should be linked with the
running kernel with the insmod which requires root privileges.Finally a special character
file with the selected major/minor numbers must be created which will represent the
driver.This is accomplished with the mknod command (requires root privileges too).

#mknod /dev/myChar c 254 0

And here is a simple example

#cat /dev/myChar
10000001
#

#echo "3" >/dev/char
#

The cat command reads the device and shows that all dip-switches are flipped off apart
from the first and the last.The echo command writes the device.The third LED will be
switched on after running the second example,passing 3 as argument.



Chapter 7

Block drivers
(software perspective)

The next logical step was the implementation of a block driver.To become fully ac-
quainted with the Linux kernel interface before dealing with the actual hardware,we
decided to build a virtual block driver.By virtual, we mean a block driver which would
manage a memory chunk of the RAM, and not the real hardware device (the Compact-
Flash itself).With the completion of the driver we could test essential operations,like con-
structing a filesystem on this memory space and then mounting it.Since the Dil/NetPC
has limited RAM we decided that a virtual block disk of 64kb would serve our purposes.

The complete source code is listed in appendix C at the end of this document.The
Makefile that was used for the char driver,can be used in this case too, with minimal
changes (mainly the name of the .c source file).

7.1 The queue concept

A block driver has almost the same software architecture as the character driver.There
is a major difference though.The structure that defines the capabilities of the driver
(named block_device_operations) is completely different.Apart from the necessary
open() and release() and some block specific system calls (e.g. check media change())
there are no read() or write() function pointers.

For each block driver (when registered) the Linux kernel initializes a new request
queue.When a user-space application needs to communicate with the device,instead of
routing data I/O directly to the driver as in character drivers, the Linux kernel just
adds a new entry to this queue with the meta-data of the request.The block driver
asynchronously serves the first request of the queue,discards it, selects the next and so
on.The driver source code, neither implements separate functions for input and output,
nor are any defined, in the capabilities structure. There is instead only one function,
which describes what happens when a request is served.

This approach has some unique advantages.First of all the queue is not a simple first-
in-first-out queue.The Linux kernel examines the geometry of each request and places it
accordingly in the queue.Requests which are “close enough” are grouped in the queue
or at least placed in the best possible sequence.This results in a highly optimized queue
which offers great speeds at block devices such as hard disks.The intelligence behind
this idea is implemented in core kernel code,so that the driver programmer is free to
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concentrate on the specific hardware device and not on generic driver code.Newer kernel
versions can improve this code without any change in drivers.

Figure 7.1 shows how I/O is performed for both character and block drivers.It demon-
strates the different way, data flows between user and kernel space for both types of
drivers.

Figure 7.1: Character versus block driver access

The Linux kernel queues are so flexible,that the programmer can either define his/her
own queue rules or even use no queue at all and work with the raw requests as they
come.It is even possible to use multiple queues in one driver if this is needed.In our
case, since this time the “device” is memory and the real hardware described next,
is a CompactFlash disk with no moving parts,there was no need for these advanced
features.We used the default queue of the Linux kernel.

7.2 Source code description (virtual block driver)

The init module() function of the virtual block driver is similar to the one of the char
driver.First the register blkdev() function is called which informs the Linux kernel that
this driver implements a block device.The arguments are the same as with the character
device registration function.The rest of the code is block specific.The blk init queue()
function deals with the default queue we mentioned above.The first argument indicates
that the default queue parameters will be used,while the second argument is a pointer
to the function that will serve the requests.

Another responsibility of the init module() is to define the geometry values of the
block device.This is accomplished by filling three global arrays with the appropriate in-
formation.These two dimensional arrays are indexed by major and minor numbers.The
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three arrays are blk_size[][],blksize_size[][] and hardsect_size[][] which de-
fine the size of the device in kilobytes,the size of the block in bytes this device uses,
and the sector size in bytes (almost always 512).Because our driver implement a new
device,memory for the each value must be allocated with the kmalloc() function (mal-
loc() doesn’t exist in kernel space.The example shows how to set the sector size (major
is 254):

hardsect_size[major]=kmalloc(1 * sizeof(int), GFP_KERNEL);
hardsect_size[major][0]=512; /* 512 Bytes the minimum */

An optional setting is how many sectors should the kernel request in advance, when
accessing the device.There is an array for all given devices of the same major number
read_ahead[] and another for each individual device max_sectors[][] which define
this.Notice that the first array is one-dimensional.These settings affect mainly perfor-
mance, when it comes to hard disks.In our case, where seek times are zero, they are not
essential.

Finally, the memory segment that will hold the actual storage of the driver must be
reserved.We use the vmalloc() function to allocate 64k of memory to the data pointer.We
also use the memset() function which behaves as in user-space.

The cleanup module() performs in reverse order the above steps.It unregisters the
block device,clears the request queue,frees the values of the global arrays, and releases
the 64k of memory.

7.2.1 Handling a request

The request function is implemented exactly by the book1.The whole function is a while
loop (it looks infinite but it isn’t).The first statement is the INIT_REQUEST macro which
checks internally the request for validity.The next printk() statement prints some vital
characteristics of the request.The CURRENT macro points to the request which is being
served.The actual data transfer that takes places is handled by the function with the
same name.It returns the success of the transfer which is passed back to the kernel with
the end request() function.

Then the code loops again in order to handle the next request available.If there are
no more requests and the queue is empty,the INIT_REQUEST macro returns,and thus the
loop is terminated.

The most important fields of the request structure are the following:

int cmd Shows whether this request is a READ or WRITE operation.

unsigned long sector Starting sector of the transfer.

unsigned long current nr sectors Number of sectors to be transfered.

char *buffer Data buffer where sectors will be read/written from/to.

The last but most important part of the code is the actual transfer() function.The
idea behind it, is really simple.The function has available as an argument the current
request so it can calculate the size of bytes requested and where to read/write them.First,

1Linux device drivers 2nd edition
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there is a mandatory check, to see if the request points to data, greater than the capacity
of the device.If not,the driver prints a warning and ends the request (with failure).

Then the byte-copying process takes places.We use the memcpy() function which is
similar with the one from user-space.The arguments depend on the type of the request
(read or write).If the operation is “read”, we copy from the 64k allocated memory to
the buffer of the request.In the opposite case, when we have a “write”, we copy from
the buffer of the request structure to the memory of the driver.

7.3 Testing the virtual device driver

The best way to test a block driver is to build a file-system on it,mount it and then
list/read/write files.We used the minix filesystem since the Dil/NetPC has built-in sup-
port for it(but not for ext22 or for fat3).The Minix fs is a simple filesystem which can be
created on partitions up to 64MB capacity. After compiling the module on the worksta-
tion it should be transfered to the Dil/NetPC board with FTP.Then it should be linked
with the running kernel with the insmod which requires root privileges.

This time a special block file with the selected major/minor numbers must be created
which will represent the driver.This is accomplished with the mknod command (requires
root privileges too).Notice the “b” argument.

#mknod /dev/myBlock b 254 0

The next step is to build the file-system on the device.This is accomplished by a
user-space program called mkfs.minix which is already installed in the Dil/NetPC.

#dd if=/dev/zero of=/dev/myBlock bs=1k count=64
#mkfs.minix /dev/myBlock

The first command writes zeroes to the device.This isn’t necessary since with the
memset() function we cleared the allocated memory,but nevertheless it is a good tactic
before creating a filesystem.Finally we can mount the device:

#mkdir /mnt/test
#mount -t minix /dev/myBlock /mnt/test
#cd /mnt/test
#ls
#df

The final command (Disk Free) should show that /dev/myBlock which is mounted
on /mnt/test is indeed 64KB.There are however 62.5KB free on the device,since one or
two kilobytes are reserved by the minix filesystem itself.

2the native filesystem of Linux
3the native filesystem of DOS/win95/win98
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Block drivers
(hardware perspective)

The previous chapter examined the generic programming interface of block drivers.All
block drivers for the Linux kernel must conform with it, so that communication between
the kernel and the device is standard.This way all user-space applications can use the
device without knowing the details of the hardware.A driver is essentially a programming
module like any other.It hides an implementation behind a well defined API which is
exported to the “outer” world.

Now, the hardware-specific part must be examined.We describe here the low-level
communication, between the CPU of the Dil/NetPC and the CompactFlash adapter.The
full source code is again available at appendix C.It is similar to the code of the virtual
block driver.The same Makefile can be used too.This time however,data transfer is a lot
more complicated than a simple memcpy() function.

We followed a bottom-up approach for this chapter.First we describe the low-level
data transfer as defined by the ATA/IDE protocol,then how to actually control and send
commands to the CompactFlash from the Dil/NetPC and finally how to wrap all this a
block Linux driver.

8.1 ATA/IDE specifications

CompactFlash cards can operate in three major modes:

1. PC Card Memory mode

2. PC Card I/O mode

3. True IDE mode

We will deal with the third mode which makes CompactFlash cards behave like
a hard-disk.With this mode, interfacing with the card is accomplished by the use of
the ATA/IDE protocol.Therefore will will only describe the registers,operations and
functions of the CompactFlash which are relevant to this mode only.

Since the ATA/IDE protocol is targeted at hard-disks, we used a small subset of it.For
example, the protocol defines a “seek” operation which has no point for CompactFlash
cards (no movable parts).We are interested only in the basic I/O operations.
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8.1.1 Registers

The ATA/IDE protocol defines the following registers.

• Data Register (read/write)

• Alternative Register (read)

• Drive Address Register (only for compatibility)

• Error Register (read)

• Sector Count Register (read/write)

• Sector Number Register (read/write)

• Cylinder Low Register (read/write)

• Cylinder High Register (read/write)

• Drive Head Register (read/write)

• Status Register (read)

• Control Register (write)

• Feature Register (write)

• Command Register (write)

Some registers are overlapped.For example Command and Status are the same reg-
ister.Reading from it returns the contents of the Status register,while data written to it
are sent to the Command register.

A detailed description of the registers follows.

Data Register

This is a 16 bit wide register.It can be divided into two registers (data high/data low)
when 8-bit transfer mode is used.It is the register which holds the actual data which are
written/read to/from the CompactFlash Disk.

Alternative Register

Same bits as the Status register.Reading the Status register does clear a pending inter-
rupt while reading the Auxiliary Status register does not.

Drive Address Register

Not used.For compatibility purposes only.
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Error Register

In case of an error,this register contains the error code.The host processor should read
this register when it detects an error,indicated by bit 0 of the Status Register.

Error Register
7 6 5 4 3 2 1 0

BBK UNC 0 IDNF 0 ABRT 0 AMNF

Bit 7(BBK) this bit is set when a Bad Block is detected.

Bit 6(UNC) this bit is set when an Uncorrectable Error is encountered.

Bit 5 this bit is 0.

Bit 4(IDNF) the requested sector ID is in error or cannot be found.

Bit 3 this bit is 0.

Bit 2(Abort) This bit is set if the command has been aborted because of a Compact-
Flash Storage Card status condition: (Not Ready, Write Fault, etc.) or when an
invalid command has been issued.

Bit 1 this bit is 0.

Bit 0(AMNF) This bit is set in case of a general error.

Sector Count Register

Number of sectors to read or write.If zero, the maximum value (256) is assumed.Because
we didn’t use multiple sector transfers,we always set this register to 1.

Sector Number Register

This register holds the starting sector of the operation.In the case of LBA (described in
the next section) it holds bits 0-7.

Cylinder Low Register

This register holds the low 8 bits of the cylinder for the next operation.In the case of
LBA (described in the next section) it holds bits 8-15.

Cylinder High Register

This register holds the high 8 bits of the cylinder for the next operation.In the case of
LBA (described in the next section) it holds bits 16-23
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Drive Head Register

This register holds the drive/head in the case of C/H/S addressing or bits 24-27 in the
case of LBA.

Drive/Head register
7 6 5 4 3 2 1 0
1 LBA 1 DRV HS3 HS2 HS1 HS0

Bit 7 this bit is 1.

Bit 6(LBA) 0 to use C/H/S or 1 to select LBA.In the case of LBA this register contains
bits 24-27.

Bit 5 this bit is 1.

Bit 4(DRV) The drive number 0 or 1.We used 0

Bit 3(HS3) Bit 3 of the head number in C/H/S mode.Bit 27 in LBA

Bit 2(HS2) Bit 2 of the head number in C/H/S mode.Bit 26 in LBA

Bit 1(HS1) Bit 1 of the head number in C/H/S mode.Bit 25 in LBA

Bit 0(HS0) Bit 0 of the head number in C/H/S mode.Bit 24 in LBA

Status Register

This register returns the status of the CompactFlash card.It is a very important register.

Status register
7 6 5 4 3 2 1 0

BUSY RDY DWF DSC DRQ CORR 0 ERR

Bit 7(BUSY) this bit is 1 while the CompactFlash is performing an operation.No
other bits are valid in this case.The command registers are locked too.

Bit 6(RDY) This bit shows whether the CompactFlash is ready to accept the next
command.

Bit 5(DWF) If this bit is 1 a write fault has occurred

Bit 4(DSC) This bit shows whether the CompactFlash is ready to accept the next
command.(Device seek complete).

Bit 3(DRQ) This bit is 1 when the CompactFlash waits the host to read/write data
from/to the Data register.(Data request)

Bit 2(CORR) A correctable error has occurred and corrected too.

Bit 1 This bit is 0.

Bit 0(ERR) An error has occurred.The Error register shows type of error.
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Control Register

Writing to this register results in a software reset of the CompactFlash.

Control register
7 6 5 4 3 2 1 0
X X X X X SWRST -IEN 0

Bit 7 This bit is reserved.

Bit 6 This bit is reserved.

Bit 5 This bit is reserved.

Bit 4 This bit is reserved.

Bit 3 This bit is reserved.

Bit 2(SWRST) While this bit is 1 the CompactFlash performs a software reset.The
reset ends when this bit is set again to 0.

Bit 1(-IEN) When this bit is 0 interrupts are enabled.If it is 1 interrupts are disabled.

Bit 0 This bit is 0.

Feature Register

A write-only register that the host can use to select device-specific characteristics.We
didn’t use it.

Command Register

Another important register.Writing to this register one of the ATA codes,issues the
respective command to the CompactFlash Disk.

8.1.2 ATA/IDE Commands

Table B.1 at the end of this document (appendix) lists all ATA/IDE commands.Although
there are many commands for various purposes (security,power saving e.t.c) we used the
most essential of them which are the following:

Basic ATA/IDE Commands
Command hex code
Identify driver E4h
Read sector(s) 20h/21h
Write sector(s) 30h/31h

These commands are written to the Command Register described in the previous
section.We use the “read sector” operation to transfer a single sector (512 bytes) from
the CompactFlash card to Dil/NetPC.We use the “write sector” to transfer a single
sector from Dil/NetPC to the CompactFlash.The “Identify drive” operation is used
to query the CompactFlash for the geometry values and therefore capacity (along with
some other informational data).The first two commands accept a single parameter which
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show the sector of the CompactFlash that will be written/read to/from.It is defined by
setting the geometry values (C/H/S or LBA) at the respective registers before sending
the hex code to the Command Register that starts the operation.

8.2 Communication with the CompactFlash adapter

The CompactFlash adapter from Elektor provides an easy way to use a CompactFlash
card with IDE/ATA.The adapter is plugged directly on ATA/IDE cable.The ATA/IDE
registers are hardwired to predefined addresses.Table 8.1 shows these addresses.Notice
that there are two 8-bit data registers instead of one 16-bit wide1.

Register Name Base hex address
Data (MSB) 0x0
Alternative 0x6
Drive address 0x7
Data (LSB) 0x8
Error 0x9
Sector count 0xA
Sector number 0xB
Cylinder Low 0xC
Cylinder High 0xD
Drive Head 0xE
Status 0xF
Device Control same as Alternative
Feature same as Error
Command same as Status

Table 8.1: CompactFlash adapter register mappings

To actually communicate with the CompactFlash,the host CPU writes and read from
these registers.The sequence of steps required for each operation is examined in detail
in the following paragraphs.

8.2.1 Reading a sector

To read a sector first the host CPU asks from the CompactFlash controller to fetch it
and copy it to the internal buffer of the card.Then the host CPU reads the two data
registers(high and low until all 512 bytes are retrieved.

The procedure involves:

1. Selecting the starting sector by setting the appropriate values at Drive Head,Cylinder
low,Cylinder high and Sector registers.

2. Indicating that only one sector should be transfered by writing 1 to Sector Count
register.

3. Sending the read command(0x20 or 0x21) to the Command register.
1Msb=most significant bits,lsb=least significant bits
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4. Waiting until the CompactFlash is ready and has fetched the sector.

5. Reading 256 times the two data registers (high and low) until all 512 bytes of the
sector are retrieved.

Figure 8.1 shows the flow chart of the procedure.

Figure 8.1: Sector read procedure

8.2.2 Writing a sector

To write a sector first the host CPU copies the data to the internal buffer internal buffer
of the card.Then the CompactFlash controller writes the sector to the memory cells and
informs the host CPU the success of the operation.

The procedure involves:

1. Selecting the starting sector by setting the appropriate values at Drive Head,Cylinder
low,Cylinder high and Sector registers.

2. Indicating that only one sector should be transfered by writing 1 to Sector Count
register.

3. Sending the write command(0x30 or 0x31) to the Command register.
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4. Waiting until the CompactFlash is ready for the transfer.

5. Writing 256 times the two data registers (high and low) until all 512 bytes of the
sector are transfered.

6. Waiting until the CompactFlash has verified that the sector is saved without errors.

Figure 8.2 shows the flow chart of the procedure.

Figure 8.2: Sector write procedure

8.2.3 Identifying the CompactFlash

Identifying the CompactFlash card is similar to reading a sector.We request however,a
special sector which contains ASCII characters and is hardcoded into the CompactFlash
itself,instead of a real sector stored in the memory cells of the card.From this sector
we can acquire the vendor of the card,the firmware version,the ID number, and most
importantly, the capacity of the card.

The procedure is the same with the read operation,apart from the fact that no sector
is selected with Drive head,cylinder low/high and sector registers.Instead, the host CPU
sends right away the identify command (0xEC) to the Command register.
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From the resulting sector several information fields can be exported.The format
of this sector is examined with details in the CompactFlash specifications.Since many
fields are vendor-specific we used only the most basic.Table 8.2 shows the fields we are
interested in.(Word=2bytes=16bits)

Word Address Total bytes Description
0 2 Should be 0x848A for CompactFlash cards
1 2 Number of cylinders
3 2 Number of heads
6 2 Number of sectors per track
21 2 Internal Buffer size in 512 byte increments
7-8 4 Number of total sectors

10-19 20 Serial ID of the Card
23-26 8 Firmware Version
27-46 40 Vendor String

Table 8.2: Identification sector contents

The capacity of the CompactFlash card can be calculated in two ways.The first way
is:

Totalsectors ∗ 512bytes/sector

The second way is:

Cylinders ∗ heads ∗ sectors/track ∗ 512bytes/sector

These two numbers must match.

8.3 LBA translation

The sample code from the Elektor magazine uses C/H/S addressing mode.With this
mode, each sector is characterized by 3 numbers.This is inconvenient since each sector
could be defined by only one number.Moreover, there were some technical limitations
with this mode.To this purpose, the LBA addressing mode was proposed which considers
all sectors of a device members of a single array.Each sector can now be selected by it’s
index.The LBA address of a sector are 27 bits which uniquely identify it.

Transferring data according to the Linux kernel layer involves only a starting sec-
tor and the number of sectors to transfer,so LBA addressing is ideal.The sample code
from elektor uses C/H/S addressing so an important issue was to adapt it to use LBA
addressing.

printf ("Reading track at cyl:%u head:%u sector:%u\n\r",cyl,head,sector);
atrDRHEAD=(0xA0 | head);
atrCYLHIG = cyl>>8;
atrCYLLOW = cyl;
atrSECNR=sector;
atrSECCNT=1;
atrCOMMAND=0x20;
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This is the original code which reads a sector provided that cyl, head and sector
define the geometry of the sector.The atrXXX variables are macros which point to the hex
addresses of the respective registers.Notice that since this code is for the 8051 processor
no outb() functions are present,instead simple assignment is used.The first step was to
make it compile as a x86 Linux object file.

printk ("Reading track at cyl:%u head:%u sector:%u\n",cyl,head,sector);
outb((0xA0 | head),atrDRHEAD);
outb(cyl>>8,atrCYLHIG);
outb(cyl,atrCYLLOW);
outb(sector,atrSECNR);
outb(1,atrSECCNT);
outb(0x20,atrCOMMAND);

Then we had to use LBA.The C/H/S code is simple.The sector value is copied
directly to the respective register, the low bits of cylinder value are copied to Cylinder
Low Register (since outb() copies a single byte),and by shifting the value, the high bits
are sent to Cylinder high Register.Finally the head value (4 bits-max 8 heads) are copied
to Drive head register after an OR operation with 0xA0 (10100000) which selects drive 0
(bit 4) indicating also that this is C/H/S (bit 6).See the previous section for the details
of the register.

For the LBA addressing mode the 27 bits must be allocated in these 4 registers.Bits
0-7 belong to the Sector register,bits 8-15 belong to the Cylinder low register,bits 16-23
belong to the Cylinder high register and bits 24-27 belong to the Drive head register.This
can be accomplished by shifting operations easily.

Only the low 4 bits of the Drive head register are LBA bits.The high 4 should be
1110 which set LBA mode(bit 6).So if we have a variable with 24-31 LBA bits (28 to 31
are garbage) we must perform an AND operation with 0xF (00001111) to discard the
garbage by setting the high 4 bits to zero and keeping the value of the low 4 bits.Then
we must perform an OR operation with 0xE0 (11100000) to set LBA mode and leave
the other bits intact.

So if variable sector holds the LBA address,the final LBA code is:

printk ("Reading track at LBA sector:%u\n",sector);
outb((((sector>>24)&0xF)|0xE0),atrDRHEAD);
/* sector >>24 take the [31-24] (we need 27-24) */
/* & 0xF (00001111) discard [31-28] */
/* | 0xE0 (11100000) set LBA */
outb(sector>>16,atrCYLHIG); /* The [23-16] bits */
outb(sector>>8,atrCYLLOW); /* The [15-8] bits */
outb(sector,atrSECNR); /* The [7-0] bits */
outb(1,atrSECCNT);
outb(0x20,atrCOMMAND);

This way we can read and write sectors with only one argument (the LBA address)
of the sector instead of three.
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8.4 Chip select mapping

To access the external pins of the 8051 the programmers assigns values to predefined hex
addressed.With x86 processors this is not so simple.The programmer must “map” the
registers of the device to the memory space of the processor.Then,writing and reading
to/from this memory range sends and receives commands from the device.

8.4.1 Chip select signal

Chip select is a hardware term.It it a method to share a single bus between multiple
devices.The host CPU and the slave devices are all connected to the bus using the same
signals (address/data).Then a separate chip select signal for each device is connected
to the host CPU.These signals are used by the host CPU to select which device to
communicate with.Figure 8.3 shows the configuration.

Figure 8.3: Chip select example

The CPU sends commands across the bus and sets the appropriate chip select sig-
nal.All devices ignore the bus apart from the one which has the chip select signal set.In
our case there is only one device connected to the bus of the Dil/NetPC,but we must
still deal which chip select so that when commands are sent to the bus,the chip select
signal of the CompactFlash adapter must be set.

8.4.2 I/O mapping concept

The next step is to reserve some memory space from the address range of the processor
to map the CompactFlash registers.Table A.3 at the end of this document shows the
full address range of DNP/1486-3v.The free segments are shown in table 8.3.(By free we
mean unused for both the DNP/1486-3v and the PC/AT standard).

We choose the first available range starting from 0x240.Since we need 16bytes for the
registers of the CompactFlash (see table 8.1) we must map 0x240h-0x24Fh.This address
range must be mapped to the CompactFlash registers.
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Start Range to end range
0x240h - 0x277h
0x280h - 0x2AFh
0x330h - 0x33Fh
0x340h - 0x36F
0x390h - 0x39F

Table 8.3: Unused address map

The whole idea is that after everything is setup correctly writing the reserved ad-
dress range doesn’t send the data to the actual memory of the CPU,but instead they
are directed to the bus of the Dil/NetPC.The chip select signal is activated so the Com-
pactFlash adapter which “listens” to the bus, receives the data and writes them to the
internal register it is addressed to.

Here is an example.

outb(0x1,0x24B);

A simple outb() line which sends 0x1 to address 0x24B.This triggers the following:

1. The CPU does not write to the “real” 0x24B address because it detects that 0x240
to 0x24F area is I/O mapped.

2. A byte with value 0x1 is sent to the bus through the 8 bit lines.See table 4.3

3. The address bits of the bus are set to 0xB.The 0x240 address is the base address
which is used by the CPU only for chip select mapping.

4. The write signal of the bus is triggered.

5. The chip select signal becomes low.

6. The CompactFlash adapter which is connected to the bus (see table 4.4) notices
activity.

7. Since the chip select signal is activated the CompactFlash reads 0x1 from the bus.

8. The adapter notices that address 0xB is internally mapped to the Sector Count
Register (see table 8.1).So it writes 0x1 to it

9. According to the ATA/IDE specifications the Sector count is set to 1.

The next subsection describes the registers of the CPU of the Dil/NetPC, that will
be used to setup chip select mapping.All registers are accessed with indexed mode.First
their address is sent to 0x22h and then data is accessed at 0x23h.

8.4.3 AMD SC410 Register set

The chip select pin of the Dil/NetPC what we will use is CS1.The internal pin of the
processor is GPIO CS0.A description for registers of the CPU of the Dil/NetPC that
we will use to setup chip select mapping follows:
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GPIO Read-Back/Write Register A (0xA6)

This register is the main chip select register which controls which chip select signals are
used or not.Since a chip select signal is set low during activation the 0 value shows chip
select slots that we will use.

GPIO Read-Back/Write Register A
Bit 7 6 5 4 3 2 1 0

Default X X X X X X X X

Bit 7 GPIO CS7 Status and Control.

Bit 6 GPIO CS6 Status and Control.

Bit 5 GPIO CS5 Status and Control.

Bit 4 GPIO CS4 Status and Control.

Bit 3 GPIO CS3 Status and Control.

Bit 2 GPIO CS2 Status and Control.

Bit 1 GPIO CS1 Status and Control.

Bit 0 GPIO CS0 Status and Control.

GPIO CS Function Select Register A (0xA0)

This register defines whether CPIO CS0 to CPIO CS3 are used for input or output

GPIO CS Function Select Register
Bit 7 6 5 4 3 2 1 0

Default 0 0 0 0 0 0 0 0

Bit 7 GPIO CS3 Signal is a Primary Activity and Wake-up (Falling Edge) Enable
0 = Not activity or wake up
1 = Cause activity or wake up

Bit 6 GPIO CS3 Signal is an Input/Output
0 = Input
1 = Output

Bit 5 GPIO CS2 Signal is a Primary Activity and Wake-up (Falling Edge) Enable
0 = Not activity or wake up
1 = Cause activity or wake up

Bit 4 GPIO CS2 Signal is an Input/Output
0 = Input
1 = Output

Bit 3 GPIO CS1 Signal is a Primary Activity and Wake-up (Falling Edge) Enable
0 = Not activity or wake up
1 = Cause activity or wake up
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Bit 2 GPIO CS1 Signal is an Input/Output
0 = Input
1 = Output

Bit 1 GPIO CS0 Signal is a Primary Activity and Wake-up (Falling Edge) Enable
0 = Not activity or wake up
1 = Cause activity or wake up

Bit 0 GPIO CS0 Signal is an Input/Output
0 = Input
1 = Output

GPIO Termination Control Register A (0x3B)

This register controls whether the internal pull-ups for chip selects are enabled or dis-
abled.Since we want our chip select signal to be set high(1) and become low(0) only
when activated we must set the appropriate pull-up resistor which will pull the volt
level to high.

GPIO Termination Control Register A
Bit 7 6 5 4 3 2 1 0

Default 1 1 1 1 1 1 1 1

Bit 7 GPIO CS7 Pull-up Enable/Disable
0 = Disabled
1 = Enabled

Bit 6 GPIO CS6 Pull-up Enable/Disable
0 = Disabled
1 = Enabled

Bit 5 GPIO CS5 Pull-up Enable/Disable
0 = Disabled
1 = Enabled

Bit 4 GPIO CS4 Pull-up Enable/Disable
0 = Disabled
1 = Enabled

Bit 3 GPIO CS3 Pull-up Enable/Disable
0 = Disabled
1 = Enabled

Bit 2 GPIO CS2 Pull-up Enable/Disable
0 = Disabled
1 = Enabled

Bit 1 GPIO CS1 Pull-up Enable/Disable
0 = Disabled
1 = Enabled

Bit 0 GPIO CS0 Pull-up Enable/Disable
0 = Disabled
1 = Enabled
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Suspend Mode Pin State Override Register(0xE5)

This register has many bits with no interest to us.The important bit is 0 which controls
the termination of pins.It is the “general” pull-up register.

Suspend Mode Pin State Override Register
Bit 7 6 5 4 3 2 1 0

Default 0 0 0 X X 0 0 0

Bit 7 PC Card Socket B Termination Override.

Bit 6 PC Card Socket A Termination Override.

Bit 5 Suspend Mode Termination Override.

Bit 4 Reserved.

Bit 3 Reserved.

Bit 2 ISA Interface Termination Override.

Bit 1 ROM Interface Termination Override.

Bit 0 Pin Termination Latch Command.Writing 1 to this pin results to the proper
termination at the pins of registers 3B 3Eh, CAh, EA[6], and F2h.

GP CSA I/O Address Decode Register(0xB4)

This register defines the 8 low bytes of the address space mapped for CSA.

GP CSA I/O Address Decode Register
Bit 7 6 5 4 3 2 1 0

Default 0 0 0 0 0 0 0 0

Bit 7 Chip Select A Address Bit 7.

Bit 6 Chip Select A Address Bit 6.

Bit 5 Chip Select A Address Bit 5.

Bit 4 Chip Select A Address Bit 4.

Bit 3 Chip Select A Address Bit 3.

Bit 2 Chip Select A Address Bit 2.

Bit 1 Chip Select A Address Bit 1.

Bit 0 Chip Select A Address Bit 0.
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GP CSA I/O Address Decode and Mask Register(0xB5)

This register defines the 2 high bytes of the address space mapped for CSA and also the
mask that will be used.Details are examined in the next section.

GP CSA I/O Address Decode and Mask Register
Bit 7 6 5 4 3 2 1 0

Default X X 0 0 0 0 0 0

Bit 7 Reserved.

Bit 6 Reserved.

Bit 5 Mask SA3

Bit 4 Mask SA2

Bit 3 Mask SA1

Bit 2 Mask SA0

Bit 1 Chip Select A Address Bit 9.

Bit 0 Chip Select A Address Bit 8.

GP CSA/B I/O Command Qualification Register(0xB8)

This register controls the qualification of CSA,meaning whether chip select will set to
low only when the address bits of the bus change or when the read or write signal
change too.These are bits 0 and 1.

GP CSA/B I/O Command Qualification Register
Bit 7 6 5 4 3 2 1 0

Default X 0 0 0 X 0 0 0

Bit 7 Reserved.

Bit 6 GP CSB ISA I/O Cycle Data Bus Width and Timing Selector.

Bit 5 Qualify GP CSB with IOR/IOW.

Bit 4 Qualify GP CSB with IOR/IOW.

Bit 3 Reserved.

Bit 2 GP CSA ISA I/O Cycle Data Bus Width and Timing Selector.

Bit 1-0 Qualify GP CSA with IOR/IOW.
0 0 = Not additionally qualified by -IOR or by -IOW
0 1 = Additionally qualified by -IOR only
1 0 = Additionally qualified by -IOW only
1 1 = Additionally qualified by either -IOR or -IOW.
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GP CS to GPIO CS Map Register A(0xB2)

We use this register to assign GP CSA of the Dil/NetPC to GPIO CS0 of the CPU.

GP CS to GPIO CS Map Register A
Bit 7 6 5 4 3 2 1 0

Default 1 1 1 1 1 1 1 1

Bit 7-4 Map GP CSB to One of the GPIO CS Pins
The number programmed corresponds to the GPIO CS that is mapped:
0 0 0 0 = GPIO CS0
0 0 0 1 = GPIO CS1
. .
1 1 1 0 = GPIO CS14
1 1 1 1 = Disabled

Bit 3-0 Map GP CSA to One of the GPIO CS Pins
The number programmed corresponds to the GPIO CS that is mapped:
0 0 0 0 = GPIO CS0
0 0 0 1 = GPIO CS1
. .
1 1 1 0 = GPIO CS14
1 1 1 1 = Disabled

8.4.4 Setting chip select mapping in software

The hardware part of the chip select setup was described already.The appropriate pins
of the CompactFlash adapter and the Dil/NetPC must be connected together via an
ATA/IDE cable.Now we describe how to setup it in software.

The following code informs the the AMD CPU that memory space 0x240 to 0x24F
is I/O mapped and that any transfer to/from it should be directed to the bus with the
chip select signal (CS1) activated.

printk("Setting I/O mapping...");
write_value(0xFF,0xA6);
write_value(read_value(0xA0)|0x01,0xA0);
write_value(read_value(0x3B)|0x01,0x3B);
write_value(read_value(0xE5)|0x01,0xE5);
write_value(0x40,0xB4);
write_value((read_value(0xB5)&0xC0)|0x02,0xB5);
write_value((read_value(0xB8)&0x88),0xB8);
write_value(read_value(0xB2)&0xF0,0xB2);
write_value(0xFE,0xA6);
printk("OK\n");

The write value() and read value() functions perform simple I/O in indexed mode which
was described in a previous chapter.The write value() function sends it’s first argument
to the register specified by the second argument.

Here is a line-by-line explanation of the code.
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write_value(0xFF,0xA6);

This line writes 0xFF (11111111) to the GPIO Read-Back/Write Register A disabling
all chip selects.

write_value(read_value(0xA0)|0x01,0xA0);

This line sets the last bit of the GPIO CS Function Select Register A initializing
GPIO CS0 as output.The OR operations is used to leave the other bits of the regis-
ter intact.

write_value(read_value(0x3B)|0x01,0x3B);

This line enables the internal pull-up resistor for GPIO CS0 only.

write_value(read_value(0xE5)|0x01,0xE5);

Like interrupts, where apart from the individual bits which enable them, there is an
“enable all” bit,setting the last of this register enables the pull-up resistors.Without this
line, the previous one doesn’t work.

write_value(0x40,0xB4);

This line defines the low 8 bits of the chip select address.For us it is 0x40 (from the full
0x240).

write_value((read_value(0xB5)&0xC0)|0x02,0xB5);

This line defines the high 2 bits of the chip select address.For us it is 0x2 (from the full
0x240).The AND operation with 0xC0(1100000) leaves the first 2 bits intact and sets
the mask to 0000.We select this mask because we want 16 bytes from 0x240 to 0x24F.If
the mask was for example 1000 we would get 0x240 to 0x247(8 bytes) or if it was 1100
we would have 0x240 to 0x243 (4 bytes).

write_value((read_value(0xB8)&0x88),0xB8);

This line sends 0x88(10001000) to the GP CSA/B I/O Command Qualification Register
showing that we only want chip select to be triggered by the address signal only.(Not
by read and/or write signals).

write_value(read_value(0xB2)&0xF0,0xB2);

This line writes to the GP CS to GPIO CS Map Register A the value 0xF0(11110000)
mapping GP CSA to GPIO CS0 and disabling GP CSB.

write_value(0xFE,0xA6);

This line writes 0xFE (11111110) to the GPIO Read-Back/Write Register A enabling
only GPIO CS0.

That is all.Now all outb() and inb() functions can “talk” to the CompactFlash card
using 0x240-0x24F memory range.
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8.5 Source code description (Block driver)

The full source code is listed in appendix C along with the appropriate makefile.The
code is based on the virtual block driver after incorporating everything presented in this
chapter.

The init module() function has many responsibilities now.First it checks if 0x240-
0x24F is available with the check region().The first argument is the start of the range
requested and the second the number of bytes requested (0x10h =16 bytes).If the range
is indeed available it is reserved with the request region().The third argument is the
name that will be shown under cat /proc/ioports.

Next it calls the ata reset() function which resets the CompactFlash for 25 microsec-
onds (the minimum time as defined it the ATA/IDE standard).To fill the global arrays
with the geometry details of the CompactFlash card, the ataidentify() function must
be called first to retrieve them.The cleanup module() must now release the memory
requested with release region()

The read and write functions transfer a single sector from/to the CompactFlash card
to the global sector_data[] array.The sec1[] and sec2[] arrays (each 256 bytes) keep
temporarily the low and high bytes of the sector respectively.

The printerror() function is only called when an error has occurred.It prints a mes-
sage to the console explaining the nature of the error.

Finally the we have included a read only proc entry which can be used for debugging
purposes.To implement such an entry one has to create it at init module() function and
release it at cleanup module().Then a simple function (sample proc read()) defines what
happens when the proc entry is accessed.The user can run cat /proc/CompactFlash
and list the identification data of the card and also the contents of last sector transfered.



Chapter 9

Testing the final driver

The first real test of the driver we performed, that would show us if software and
hardware were correct,is the retrieval of the identification string of the CompactFlash
card.As soon as the module loads, the ataidentify() function is called and the output is
printed to the console (the minicom terminal in our case).Early tests presented us with
the following:

Name : TSHIBA THNCF128 M A
Firmware : 03 0
Serial : STCB21M82029B47305C
Cylinders : 978
Heads : 8
Sectors : 32

The two strange things about this result are the lack of “O” in the TOSHIBA
string,and the firmware number.We couldn’t confirm if the serial number is valid since
we didn’t know the correct one.The only verifiable part of this result are the geometry
values.We looked up the TOSHIBA CompactFlash specification and the values are cor-
rect.Based on this fact we considered the test result a success1 and proceeded to actual
data I/O with the CompactFlash card.

9.1 Data corruption

The raw data we used for this test is the source code (text file) of the driver itself.We
would write the text to the CompactFlash card then read it back and check for er-
rors.Each test cycle involved the following commands:

dd if=/dev/zero of=/dev/cflash bs=512 count=40

dd if=testfile of=/dev/cflash bs=512

dd if=/dev/cflash of=testX bs=512 count=40

The first command writes 0s to the first 40 sectors of the CompactFlash card.This
process clears the CompactFlash card from the previous test so that each test is exactly

1we were proved wrong later
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the same.The second command writes testfile which is the .c source file to the Com-
pactFlash card.Finally the third command reads back the first 40 sectors of the card to
the testX file.Then with the diff command a comparison between the two file would
show if there were any errors.

The first results were disappointing.There was heavy data corruption between the
original and output files.Missing bytes,words with wrong order,transposed characters
and even sectors with no data (filled with zeroes) were common.Some parts were 100%
correct and some others contained incomprehensible text.This lead us to believe that
the TOSHIBA string was broken too (“O” was missing).The corruption was so evident
that building a filesystem and mounting the CompactFlash device file didn’t work at
all.

At that point the code that accesses the CompactFlash was simply a rewrite of the
Elektor code for 8051.To remedy the situation we tried the following improvements:

• Assuming that the SC410 is faster that the 8051 we inserted several udelay() func-
tions after each hardware access inside the code, and also between the consecutive
request.The purpose of this was to allow for the hardware to “catch up” with the
software.

• We inserted the barrier() macro after each hardware access.This macro ensures
that any hardware access functions are actually performed when it is encoun-
tered in code,and are not optimized for later.Basically when a barrier() macro is
inserted, any inb() and outb() functions up to that point are guaranteed to be
complete.This is useful when some registers must have the correct values before a
specific operation or process starts.

• We inserted wmb() and rmb() functions which are supersets of the barrier() macro
and prevent the reordering of hardware writing and reading functions respectively.

• Whenever the code needs to read the value of the Status register,the result was
stored to a volatile variable.This forced the compiler to actually read again the
Status register next time it was needed,instead of assuming that it had not changed
and therefore the old value was still valid.Any code that looked like this:

printk ("Reading device information...:\n");
while (inb(atrSTATUS) !=0x50)

{
}

was changed to this:

volatile unsigned char now;
printk ("Reading device information...:\n");
while ((now=inb(atrSTATUS)) !=0x50)

{
barrier();

}
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The barrier() macro here, has double effect.It ensures that the while loop is not empty
and thus,the compiler cannot remove it,and secondly it forces the inb() function to com-
plete reading the Status register,retrieving the up-to-date value.Notice that the barrier()
family of macros has a negative impact on performance.

Unfortunately the situation didn’t change much.We performed many tests trying
to get better results,but with no success.In fact, we observed that things were a lot
worse than we thought in the beginning.The system presented Byzantine behavior.The
positions of the corrupt bytes were erratic.Each text file had different corruption schemes
than the others.Running the same test for a second time without changing anything,sometimes
resulted in different output files.Simply loading and unloading the module presented us
with up to three identification strings which would show up randomly.

This lead us to believe that something was wrong with the hardware connections,so
we decided to search the problem at a lower level.

9.2 Testing the hardware

To test the hardware we resorted to the logic analyzer.We needed to see what was being
carried by the actual data bit lines.We inserted the probes between the Dil/NetPC pins
and the ATA/IDE cable that connected it with the CompactFlash adapter.Figure 9.1
shows the configuration.

Figure 9.1: Placement of the logic analyzer

We were afraid that the data bytes would never reach the CompactFlash card.We
expected the logic analyzer to show us bytes being corrupted during the tranfer pro-
cess.But this was not the case.We verified that the ATA/IDE commands the code was
sending, were actually transfered to the CompactFlash.When the file was written to the
card the correct bytes were carried by the data bits.But when the file was retrieved from
the CompactFlash, data was already corrupted.The bytes that reached the Dil/NetPC
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were not correct.
Basically the logic analyzer confirmed that bytes that reached the Dil/NetPC, matched

those that the software code was receiving too.The problem was thay they were corrupted
in the first place.

The last idea that was proposed was shortening the ATA/IDE cable.We split the
cable in two and used one half.This reduced the data corruption a lot(20 bytes cor-
rupted/512 on average).The cable was shortened at about 3cms.Again the results were
showing major improvements.(12 bytes corrupted/512 on average).Finally the Com-
pactFlash adapter was soldered directly on the Dil/NetPC board.Displaced bytes were
now a very small minority (4 bytes corrupted/512 on average).But this didn’t eliminate
completely data corruption.The byzantine behavior disappeared though,and now the
identification string was stable:

Name : TOSHIBA THNCF128MMA
Firmware : 3.00
Serial : STCB21M82029B43547C3

9.3 Known bugs

We returned back to the software.This time we were testing small files of 512 bytes (a
sector).After trial and error we removed the volatile variables and also replaced the
inb() and outb() functions with their paused counterparts inb p() and outb p().

Now all small files of one sector are read back flawlessly.We can even build a filesystem
on the CompactFlash and mount it.However after some use,the corrupted bytes build
up and all stored files get corrupted.

We stopped development of the driver since we could not export safe conclusions
about the cause of the corruption.Although the same text file presented the same cor-
ruption schemes for every test run,the position of the corrupted bytes changed for each
text file.We could not explain this behavior.For example the text of the BSD software li-
cense is read back without errors,while the GPL software license text has small amounts
of displaced bytes.Both are simple ASCII files so there is no explanation why the first
one works and the other does not.

9.4 Conclusion

The block driver can only be considered experimental and unstable at this point.Use
in production environments is not possible yet.Further debugging (software and even
hardware) is required.

The fact that shortening the ATA/IDE cable improved the situation,suggests that
latency and cable capacitance affect the data transfer.Removing the cable and attaching
the adapter directly onto the Dil/NetPC board should eliminate corruption,but this
didn’t happen.Therefore, there are other factors that we are not aware of yet.

Three areas of the project that should be examined are:

1. Testing of the CompactFlash adapter with an 8051 development board using the
original code from elektor.This should show whether there is a hardware fault or
not.
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2. Explaining why the chip select signal is always activated during a write sector
operation.This was detected with the logic analyzer and doesn’t happen during
the read operation where the chip select signal is only activated when needed.This
is a strange behavior and isn’t documented anywhere.

3. Finding out why the first sector of a transfer suffers no corruption,but missing
bytes can appear at any of the following sectors.All sectors are transfered in a
loop,resulting in exactly the same code for each transfer.There is no reason why
corruption sometimes appears and other not.



Appendix A

SSV Dil/NetPC DNP/1486-3V
specifications

Full specifications are described in the Documentation PDF files of SSV systems which
are included in the CD-ROM.We list here the most important for the reader’s conve-
nience.

A.1 Full pin-out

Table A.1 shows the first 32 pins (1-32) of the Dil/NetPC.Table A.2 shows the rest 32
pins (33-64).

When holding the Dil/NetPC so that the AMD logo can be read on the CPU,the
first pin(1) is on the upper left corner and the last pin (64) is on the upper right one.

A.2 I/O Address map

Table A.3 on page 58 shows the full memory mapping of DNP/1486-3V. This table
should be used when selecting free memory ranges for drivers.It is best to select free
ranges when they are free both for the Dil/NetPC and the PC/AT Standard.
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Pin Name Signal Group Function
1 PA0 GPIO24 PIO Parallel I/O, Port A, Bit 0
2 PA1 GPIO25 PIO Parallel I/O, Port A, Bit 1
3 PA2 GPIO26 PIO Parallel I/O, Port A, Bit 2
4 PA3 GPIO27 PIO Parallel I/O, Port A, Bit 3
5 PA4 GPIO28 PIO Parallel I/O, Port A, Bit 4
6 PA5 GPIO29 PIO Parallel I/O, Port A, Bit 5
7 PA6 GPIO30 PIO Parallel I/O, Port A, Bit 6
8 PA7 GPIO31 PIO Parallel I/O, Port A, Bit 7
9 PB0 GPIO16 PIO Parallel I/O, Port B, Bit 0
10 PB1 GPIO17 PIO Parallel I/O, Port B, Bit 1
11 PB2 GPIO18 PIO Parallel I/O, Port B, Bit 2
12 PB3 GPIO19 PIO Parallel I/O, Port B, Bit 3
13 PB4 GPIO20 PIO Parallel I/O, Port B, Bit 4
14 PB5 GPIO21 PIO Parallel I/O, Port B, Bit 5
15 PB6 GPIO22 PIO Parallel I/O, Port B, Bit 6
16 PB7 GPIO23 PIO Parallel I/O, Port B, Bit 7
17 PC0 GPIO12 PIO Parallel I/O, Port C, Bit 0
18 PC1 GPIO13 PIO Parallel I/O, Port C, Bit 1
19 PC2 GPIO14 PIO Parallel I/O, Port C, Bit 2
20 PC3 GPIO15 PIO Parallel I/O, Port C, Bit 3
21 RXD COM1 2 SIO COM1 Serial Port, RXD Pin
22 TXD COM1 3 SIO COM1 Serial Port, TXD Pin
23 CTS COM1 8 SIO COM1 Serial Port, CTS Pin
24 RTS COM1 7 SIO COM1 Serial Port, RTS Pin
25 DCD COM1 1 SIO COM1 Serial Port, DCD Pin
26 DSR COM1 6 SIO COM1 Serial Port, DSR Pin
27 DTR COM1 4 SIO COM1 Serial Port, DTR Pin
28 RI * COM1 9 SIO C OM1 Serial Port, RI Pin
29 RESIN /MR RESET RESET Input (Watchdog)
30 TX+ LAN TX+ LAN 10BASE-T Ethernet, TX+ Pin
31 TX- LAN TX- LAN 10BASE-T Ethernet, TX- Pin
32 GND — Ground

Table A.1: Full pin-out of DNP/1486-3V (1-32)
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Pin Name Signal Group Function
33 RX+ LAN RX+ LAN 10BASE-T Ethernet, RX+ Pin
34 RX- LAN RX- LAN 10BASE-T Ethernet, RX- Pin
35 RESOUT PWRGD RESET RESET Output (Power good from Watchdog)
36 VBAT VBAT PSP SC410 Real Time Clock Battery Input
37 CLKOUT CLK IO PSP Clock Out (Default 1.8432 MHz)
38 IRTXD IR TXD PSP SC410 IrDA TXD Pin
39 IRRXD IR RXD PSP SC410 IrDA RXD Pin
40 INT5 PIRQ7 PSP Programmable Interrupt Input 5
41 INT4 PIRQ6 PSP Programmable Interrupt Input 4
42 INT3 PIRQ5 PSP Programmable Interrupt Input 3
43 INT2 PIRQ4 PSP Programmable Interrupt Input 2
44 INT1 PIRQ3 PSP Programmable Interrupt Input 1
45 CS4 GPIO CS3 PSP Programmable Chip Select Output 4
46 CS3 GPIO CS2 PSP Programmable Chip Select Output 3
47 CS2 GPIO CS1 PSP Programmable Chip Select Output 2
48 CS1 GPIO CS0 PSP Programmable Chip Select Output 1
49 IOCHRDY IOCHRDY PSP I/O Expansion Bus - I/O Channel Ready
50 IOR /IOR PSP I/O Expansion Bus - I/O Read
51 IOW /IOW PSP I/O Expansion Bus - I/O Write
52 SA3 SA3 PSP I/O Expansion - Address Bit 3
53 SA2 SA2 PSP I/O Expansion - Address Bit 2
54 SA1 SA1 PSP I/O Expansion - Address Bit 1
55 SA0 SA0 PSP I/O Expansion - Address Bit 0
56 SD7 SD7 PSP I/O Expansion - Data Bit 7
57 SD6 SD6 PSP I/O Expansion - Data Bit 6
58 SD5 SD5 PSP I/O Expansion - Data Bit 5
59 SD4 SD4 PSP I/O Expansion - Data Bit 4
60 SD3 SD3 PSP I/O Expansion - Data Bit 3
61 SD2 SD2 PSP I/O Expansion - Data Bit 2
62 SD1 SD1 PSP I/O Expansion - Data Bit 1
63 SD0 SD0 PSP I/O Expansion - Data Bit 0
64 VCC — 3.3 Volt Power Input

Table A.2: Full pin-out of DNP/1486-3V (33-64)
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I/O Address Range DNP/1486-3V Usage PC/AT Standard
000h - 00Fh 8237 DMA Controller #1 8237 DMA Controller #1
020h - 021h 8259 Master Interrupt Controller 8259 Master Interrupt Controller
022h - 023h SC410 CSCIR, CSCDR (Index and Data) —
040h - 043h 8253 Programmable Timer 8253 Programmable Timer
060h - 06Fh Port 61h 8042 Keyboard Controller
070h - 07Fh RTC, NMI Mask Register RTC, NMI Mask Register
080h - 09Fh DMA Page Registers DMA Page Registers
0A0h - 0B1h 8259 Slave Interrupt Controller 8259 Slave Interrupt Controller
0C0h - 0DFh 8237 DMA Controller #2 8237 DMA Controller #2
0F0h - 0F1h SC410 Math Coprocessor
0F8h - 0FFh SC410 Math Coprocessor
170h - 177h Unused Hard Disk Controller #2
1F0h - 1F8h Unused Hard Disk Controller #1
200h - 207h Unused Game Port
238h - 23Bh Unused Bus Mouse
23Ch - 23Fh Unused Alt. Bus Mouse
240h - 277h Unused Unused
278h - 27Fh Unused Parallel Printer
280h - 2AFh Unused Unused
2B0h - 2BFh Unused EGA
2C0h - 2CFh Unused EGA
2D0h - 2DFh Unused EGA
2E0h - 2E7h Unused GPIB
2E8h - 2EFh Unused Serial Port
2F8h - 2FFh Unused Serial Port
300h - 30Fh On-board LAN Controller Prototype Card
310h - 31Fh On-board LAN Controller Prototype Card
320h - 32Fh Unused Hard Disk Controller XT
330h - 33Fh Unused Unused
340h - 36Fh Unused Unused
370h - 377h Unused Floppy Disk Controller #2
378h - 37Fh Unused Parallel Printer
380h - 38Fh Unused SDLC Adapter
390h - 39Fh Unused Unused
3A0h - 3AFh Unused SDLC Adapter
3B0h - 3BBh Unused MDA Adapter
3BCh - 3BFh Unused Parallel Printer
3C0h - 3CFh Unused VGA/EGA Adapter
3D0h - 3DFh Unused CGA Adapter
3E8h - 3EFh Unused Serial Port
3F0h - 3F7h Unused Floppy Controller #1
3F8h - 3FFh Serial Port COM1 and IrDA Serial Port

Table A.3: Memory map of DNP/1486-3V
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ATA/IDE Command Set

This table shows all ATA/IDE commands.

59



APPENDIX B. ATA/IDE COMMAND SET 60

Command Code
Check Power Mode E5h/98h
Execute Drive Diagnostic 90h
Erase Sector(s) C0h
Format track 50h
Identify driver EC
Idle E3h/97h
Idle immediate E1h/95h
Initialize drive parameters 91h
Read buffer E4h
Read Long sector 22h/23h
Read Multiple C4h
Read sectors(s) 20h/21h
Read verify sector(s) 40h/41h
Recalibrate 1Xh
Request Sense 03h
Security Disable Password F6h
Security erase prepare F3h
Security erase unit F4h
Security Freeze lock F5h
Security set password F1h
Security unlock F2h
Seek 7Xh
Set Features EFh
Set Multiple mode C6h
Set sleep mode E6h/99/h
Stand by E2h/96h
Stand by immediate E0h/94h
Translate sector 87h
Wear level F5h
Write buffer E8h
Write long sector 32h/33h
Write multiple C5h
Write multiple w/o erase CDh
Write sector(s) 30h/31h
Write sector(s) w/o erase 38h
Write verify 3Ch

Table B.1: CF-ATA Command set
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Source code

The source code of the Makefile can be found at
/Diploma/Final/source-code/Makefile.

The source code of the Character module can be found at
/Diploma/Development/code/char/blocktest.c.

The source code of the virtual block module can be found at
/Diploma/Development/code/block2/blocktest.c.

The source code of the real hardware driver can be found at
/Diploma/Final/source-code/flashtest.c.
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