

Profiling Java Applications

Kostis Kapelonis - Agilis SA

The need for speed

Topics

• Software Quality with FindBugs

• Using Jconsole

• Monitoring with Netbeans 6

• Profiling CPU with Netbeans 6

• Profiling Memory with Netbeans 6

• Conclusion

Software quality tools

• FindBugs

• PMD

• CheckStyle

• Run from command line

• Use GUI (even webstart)

• Integrate into Netbeans/Eclipse

• Detect problematic situations

Problematic situations

• Ignoring return values from methods.

• Impossible casts.

• Unclosed Streams

• Security Problems

• Fields that should be static

• Performance problems

• Possible null pointers

• More ….

FindBugs Demo

QuickTimeﾪ and a
 decompressor

are needed to see this picture.

Topics

• Software Quality with FindBugs

• Using Jconsole

• Monitoring with Netbeans 6

• Profiling CPU with Netbeans 6

• Profiling Memory with Netbeans 6

• Conclusion

Jconsole

• Introduced in Java 5 (experimental)

• Enhanced in Java 6

• Shows basic information for JVM

• Memory (e.g. heap size)

• Threads (active/total)

• Classes Loaded

• JVM environment properties

Jconsole usage

1. Start application with
-Dcom.sun.management.jmxremote

2. Launch jconsole

3. Attach it to the application

In Java6 step 1 is not needed

Jconsole Demo

QuickTimeﾪ and a
 decompressor

are needed to see this picture.

Topics

• Software Quality with FindBugs

• Using Jconsole

• Monitoring with Netbeans 6

• Profiling CPU with Netbeans 6

• Profiling Memory with Netbeans 6

• Conclusion

Netbeans 6 profiler suite

• Integrated into Netbeans by default
• Basic information (similar to jconsole)

• CPU analysis (hotspots)
• Memory analysis (memory leaks)
• Used to optimize a correct program
• Imposes overhead on the application

Basic profiling

• Offers information similar to jconsole
• Heap size

• Threads
• Classes loaded
• Minimal overhead for the application
• Used for an overview

Basic profile Demo

QuickTimeﾪ and a
 decompressor

are needed to see this picture.

Topics

• Software Quality with FindBugs

• Using Jconsole

• Monitoring with Netbeans 6

• Profiling CPU with Netbeans 6

• Profiling Memory with Netbeans 6

• Conclusion

CPU profiling

• Optimize always the frequent code
• Use CPU profile to find this code

• 20% of the code runs 80% of time
• Optimize this 20%
• Medium overhead for the application
• Also see time spent for GC/IO/Gui e.t.c.

CPU profile Demo

Topics

• Software Quality with FindBugs

• Using Jconsole

• Monitoring with Netbeans 6

• Profiling CPU with Netbeans 6

• Profiling Memory with Netbeans 6

• Conclusion

Memory profiling

• Java code suffers from memory leaks
• Minor leaks (objects allocated once)

• Major leaks (object allocated multiple times)
• Garbage collector is your friend
• Difficult to distinguish memory leaks from

long-lived objects
• Maximum overhead for the application

Introducing Generations

• Each object has an age.
• Age is the number of times it has survived garbage

collection.
• Average age is sum of ages / objects

• Generations are different ages

• A high generation number might be a memory leak

• A high age might or might not be a memory leak

Generations example 1

• Ages are 5,10,15
• Average age is 5 +

10 +15 / 3= 10
• Generations are 3

QuickTimeﾪ and a
 decompressor

are needed to see this picture.

 Generations example 2

• Ages are
5,10,10,50,50

• Average age is
sum 125 /5 = 25

• Generations are
AGAIN 3

QuickTimeﾪ and a
 decompressor

are needed to see this picture.

Profile goal

• Run the application normally
• Collect data for a period of time
• Pinpoint objects with extreme values

• High age might be a minor leak

• High generations might be a major memory leak

• Remember that profiling imposes overhead

Memory profile Demo

Conclusions

• The tools are great but
• The application must be correct
• Profiling imposes overhead
• Profiling is time consuming

Quotes

• “Premature optimization is the root of
all evil” by Donald Knuth

• “The First Rule of Program
Optimization: Don't do it.”

• “The Second Rule of Program
Optimization (for experts only!): Don't
do it yet.” by M A Jackson

	Profiling Java Applications
	The need for speed
	Topics
	Software quality tools
	Problematic situations
	FindBugs Demo
	Slide 7
	Jconsole
	Jconsole usage
	Jconsole Demo
	Slide 11
	Netbeans 6 profiler suite
	Basic profiling
	Basic profile Demo
	Slide 15
	CPU profiling
	CPU profile Demo
	Slide 18
	Memory profiling
	Introducing Generations
	Generations example 1
	 Generations example 2
	Profile goal
	Memory profile Demo
	Conclusions
	Quotes

