
How to Preview and Diff Your
Argo CD Deployments
Argo Con 2023

Kostis Kapelonis

● Developer Advocate at Codefresh and Argo
contributor

● Codefresh is the Enterprise Platform for
Argo

● Co-author of GitOps certification with Argo
-> http://learning.codefresh.io

Problem statement
Let’s set the stage

3

No Context Diff

https://github.com/kostis-codefresh/argocd-preview-diff/pull/3

https://github.com/kostis-codefresh/argocd-preview-diff/pull/3

Diffs without context

● You merge this and ….nothing happens
● Typical scenario of many Kustomize overlays
● Same issue with hierarchy of Helm values

Hierarchy of Overlays/value files

Base

Staging Production

USEUUSEU

Native Diff context

Hierarchy of Overlays/value files

Base

Staging Production

USEUUSEU

Ideal context

No Context Helm Diff

2. Use Argo CD diff in UI
Possible solutions

9

Argo CD UI Diff

Argo CD UI Diff

Argo CD UI Diff

✅ - Preview with full context
✅ - Built into Argo CD
✅ - Zero setup/maintenance
✅ - Support for Kustomize/Helm
❌ - Doesn’t work with auto-sync
❌ - Only show changes after push
❌ - Diff is shown too late in the process

Argo CD UI Diff Recommendation

Could be used for sanity
checking in production
environments

3. Use Argo CD Local diff
Possible solutions

14

Argo CD local diff

● The Argo CD CLI allows you to diff an application between the
cluster and local manifests

● Native support for Kubernetes/Helm

Argo CD local diff

Argo CD local diff in CI

1. Open a Pull request with suggested changes
2. Have the CI system checkout the PR
3. Run in a CI pipeline “argocd diff –local” against the cluster

where the PR is destined
4. Present the diff to the user in order to view the full context

Argo CD Local Diff

✅ - Built into Argo CD
✅ - Zero setup/maintenance
✅ - Support for Kustomize/Helm
✅ - Preview with full context
✅ - No need to commit/push anything
❌ - Need direct access to Argo CD cluster
❌ - Needs network setup rules
❌ - Not scalable for multiple clusters
❌ - Problematic for Edge/Remote setups

Argo CD Local Diff Recommendation

Great for local
experimentation and
quick ad-hoc checks.
Not recommended for
other uses

4. Pre-render Manifests
Possible solutions

20

Pre-Render manifests in second Git repo

1. Use 2 GitOps repositories for each application/cluster
2. First Git repository has unprocessed files (e.g. charts/overlays)
3. Second Git repository has final rendered manifests
4. Argo CD is pointed at the second Git repository
5. An automated process renders manifests and commits them to

the second repository

Pre-Render manifests in second Git repo

Pre-Render manifests in second Git repo

1. A human creates a PR on “source” Git repo
2. A “copy” process takes content and renders manifests (using

Helm/Kustomize)
3. A second PR is opened automatically in the “Rendered” Git

repo
4. A human sees diff in the second repo
5. If PR is approved it is merged in both repos
6. Argo CD always monitors the “Rendered” Git repo

Get full context of
everything
Great for Helm apps

Pre-Render manifests in second Git repo

✅ - Preview with full context
✅ - Use native Git diff
✅ - Perfect fit for Helm apps
❌ - Needs setup/maintenance
❌ - More moving parts/Harder to debug
❌ - CI becomes a point of failure
❌ - Bypasses Argo CD support for Helm/Kustomize
❌ - Doubles number of Git repositories
❌ - Caution not to commit final manifests

Pre-Render manifests Recommendation

Several companies use
this with success. Needs
well disciplined teams
and has more moving
parts

Render manifests on the fly

27

Render manifests on the fly

● Current Git state has what is in the cluster
● PR state has proposed changes to the cluster
● Run a diff between those two

Render manifests on the fly

Render manifests on the fly

1. A human opens a PR on the manifest repo
2. We checkout out the PR and run Kustomize/Helm
3. We checkout the target of the PR and run Kustomize/Helm

again
4. We run a diff between the final rendered manifests
5. We present the diff to the human

Render manifests on the fly

https://github.com/kostis-codefresh/argocd-preview-diff/pull/2

https://github.com/kostis-codefresh/argocd-preview-diff/pull/2

Render manifests on the fly

✅ - Preview with full context
✅ - Based only on Git files
✅ - No access needed to Argo CD API
✅ - Works with any topology
✅ - Uses Argo CD support for Helm/Kustomize
✅ - No confusion over raw/final manifests
✅ - GitOps tool agnostic (could work with Flux)
❌ - Needs setup/maintenance
❌ - Might miss some corner cases

Render manifests on the fly recommendation

It is simple, robust and
scalable. Use it!

Bonus: Enforce zero changes

34

Kustomize refactoring

Kustomize refactoring

Argo CD will not do anything at all

https://github.com/kostis-codefresh/manifest-refactoring/pull/1

https://github.com/kostis-codefresh/manifest-refactoring/pull/1

1. Native Git diff

2. Argo CD UI Diff

3. Argo CD CLI Local Diff

4. Pre-render manifests on second Git repo

5. Render manifests on the fly

38

5 ways to understand the context of Manifest changes

● https://codefresh.io/blog/argo-cd-preview-diff/

● https://www.runatlantis.io/

● http://learning.codefresh.io (Argo CD certification)

39

Resources

https://codefresh.io/blog/argo-cd-preview-diff/
https://www.runatlantis.io/
http://learning.codefresh.io

Intermission: Terraform plans

40

Terraform plan

Get a preview
on what will
change

runatlantis.io

