
Updating Databases the
GitOps way

ArgoCon US 2023

Your Hosts

Rotem Tamir

CTO Ariga

rotem@ariga.io

Kostis Kapelonis

DevRel Codefresh

kostis@codefresh.io

Agenda

● Database migrations and Argo CD

● Existing approaches (init container, jobs, sync hooks)

● What to avoid and best practices

● The Atlas Kubernetes Operator

● Demo

Database upgrades
Past, present, future

A short evolutionary history
of app deployment

Manual
(ClickOps)

Imperative

Declarative

GitOps

opengitops.dev

A short evolutionary
history of db migrations

Manual (a lot of
organizations)

Imperative
(most are

here)

Declarative
(some are

here)

GitOps
(nobody is

here)

My app deployments

My db upgrades

Anti-patterns
What NOT to do

Anti-pattern I

Running migrations
manually

Manual DB migrations - avoid

1. Error prone

2. Slowest link in the chain

3. Not repeatable, not auditable

4. Stressful

Anti-pattern II

Migrations
during
startup

Run migrations on app init - Avoid

1. Attack surface - do not bundle an extra tool and its dependencies in

your app container, use separate credentials for DDL and runtime.

2. When migrations fail - reduced capacity, crash-looping

3. Migrations must be synchronized - this means that effectively only

one replica can init at any given time.

What to DO
Automate DB upgrades

Automate DB upgrades

1. Treat schema versions as artifacts

2. Handle DB upgrades like infra (or app) changes

3. Have full control over DB upgrades (and auditing)

4. DB migrations are a discrete step

5. Give db upgrades the same respect as app/infrastructure

Let’s discuss

Database
migrations with
Kubernetes

Options for Kubernetes/Argo CD

1. During application startup (avoid)

2. Use Init containers (meh)

3. Use Kubernetes Jobs (meh)

4. Use Helm hooks or Pre-sync Argo CD hooks (meh)

5. Use a GitOps Operator for DBs (recommended)

Init-containers

❌ Packaging a CLI tool (not K8s native)

❌ Decoupled from application startup

❌ Failed migrations leave app in unknown state

❌ No visibility/No auditing

Kubernetes Jobs

❌ Packaging a CLI tool (not K8s native)

✅ Decoupled from application startup

❌ Hard to associate/correlate with apps

❌ No visibility on what happened

✅ Auditing

Helm/Argo CD Hooks

❌ Packaging a CLI tool (not K8s native)

✅ Decoupled from application startup

❌ Issues with re-syncs

❌ No visibility on what happened

❌ May not be stored in Git

People are looking for a K8s native solution

GitOps for databases
Meet Atlas

open-sourced

2021
stargazers

4k
contributors

+65
Projects using on GitHub

2.4k

Introducing the Atlas Operator

Features

✅ Native Operator

✅ Versioned Migrations (AtlasMigration)

✅ Declarative Migrations (AtlasSchema)

✅ MySQL, Postgres, SQLite, SQLServer...

✅ Safety + Policies

Operators for GitOps: Why?

1. Resilience. A reconciliation loop is
more resilient than retrying a script.

2. Semantics. A CRD extends the
Kubernetes API. It’s .spec can be
validated and manipulated, it’s
.status can be observed and
consumed.

3. Operations. Codifying domain
expertise and multi step decision
trees.

“We can wrap existing schema
management solutions into
containers, and run them in

Kubernetes as Jobs.

But that is SILLY. That is not how we
work in Kubernetes.”

-Viktor Farcic, DevOps ToolKit

Atlas Operator
Demo

Running Migrations with an Operator

✅ The Kubernetes-native way!

✅ Decouples migrations from your app as a discrete step

✅ Supports safety features to prevent bad changes

✅ Exposes a clear migration status/health check

✅ 100% GitOps Automation for your DB schema

The Trinity

Apps Infra DBs

Wrapping up

● The Atlas Operators is a Kubernetes native solution for

DB upgrades

● It defines dedicated K8s Resources for migrations

● It’s open source! github.com/ariga/atlas-operator

● Can use either (imperative) or (declarative)

● Treat your DBs as infrastructure

http://github.com/ariga/atlas-operator

Questions?

rotem@ariga.io

kostis@codefresh.io

atlasgo.io argoproj.github.io crossplane.io

mailto:rotem@ariga.io
mailto:kostis@codefresh.io

Do you want more?
Backup slides

Rollbacks are B.S

● Most tools advocate for pre-planning “down” migrations.

● But practically, NO ONE uses them in production. Why?

● Dealing with partial failures? Really drop?

● The answer: declarative roll-forward

● The future: integration into the operator model

Preview/Validate changes in “dev” DB

