
Webinar

Kubernetes Anti-patterns

Kostis Kapelonis

An expert is a person who has made all the
mistakes that can be made in a very narrow

fieldfield

Niels Bohr

Background, Problems and Solutions

Kostis Kapelonis

Now Developer advocate at Codefresh
Interests: Kubernetes, CI, CD, GitOpsInterests: Kubernetes, CI, CD, GitOps

Ex Java dev (10+ years)
Ex Release manager (5+ years)
Manning author (Java testing with Spock)

Original blog
A collection of all “questionable” practices I have seen companies using
without understanding the alternatives

●https://codefresh.io/kubernetes-tutorial/kubernetes-antipatterns-1/●https://codefresh.io/kubernetes-tutorial/kubernetes-antipatterns-1/
●https://codefresh.io/kubernetes-tutorial/kubernetes-antipatterns-2/
●https://codefresh.io/kubernetes-tutorial/kubernetes-antipatterns-3/

Also published in Medium and dev.to

What this talk is about

The Kubernetes cluster is already
there (and setup correctly)there (and setup correctly)

All advice is for application
deployment and not cluster
deployment

We are interested in
applications and not cluster
infrastructure

There are different anti-
patterns for how to deploy
the cluster itself

Anti-pattern list
1. Using containers with the latest tag in

Kubernetes deployments
2. Baking the configuration inside container

images
3. Coupling applications with Kubernetes

features/services for no reason
4. Mixing application deployment with

infrastructure deployment (e.g. having

8. Using permanent staging environments instead
of dynamic environments

9. Mixing production and non-production clusters
10. Deploying without memory and CPU limits
11. Misusing health probes
12. Not using Helm (and not understanding what

Helm brings to the table)
13. Not having deployment metrics to understand infrastructure deployment (e.g. having

Terraform deploying apps with the Helm
provider)

5. Performing ad-hoc deployments with kubectl
edit/patch by hand

6. Using Kubectl as a debugging tool
7. Misunderstanding Kubernetes network

concepts

13. Not having deployment metrics to understand
what the application is doing

14. Not having a secret strategy/treating secrets in
an ad-hoc manner

15. Attempting to go all in Kubernetes (even with
databases and stateful loads)

Anti-pattern 1: Using containers with the
latest tag in Kubernetes deploymentslatest tag in Kubernetes deployments

Don’t use latest tag

Latest tag does
NOT mean the
most recent or

Latest is not a
special tag in
Docker (or
Kubernetes). most recent or

the last one built
It is just the default
tag used if you don’t
specify a tag
yourself

Latest is a transient tag

How to detect this anti-pattern

1. It can be any version of your app1. It can be any version of your app
2. You don’t really know which application version was

deployed
3. Worst case scenario: latest definition changes in the

middle of a deployment

Solution

Use specific tags in Deployments

Strategy 1 = use the Git
hash as a tag
●myapp: ccdd07d
●myapp: a70bfe1
●myapp: 95be785

Strategy 2 = use application
version (semver)
●myapp: 0.1
●myapp: 0.2
●myapp: 0.3

Strategy3 : Use date/build
number
●myapp: 8789
●myapp: 8790
●myapp: 8791

Gotcha!

https://unsplash.com/photos/ABNhXfQFtdU

All Docker tags
are mutable (!!!)

Big gotcha!

Tags can be overwritten. So version 0.1 that
John has might be different then version 0.1
that Mary has

The problems of mutable tags

An all too common scenario

1. Mary(dev) deploys image with tag 3.7 on QA Kubernetes 1. Mary(dev) deploys image with tag 3.7 on QA Kubernetes
cluster

2. Alex (QA) tests image with tag 3.7 and finds a bug
3. John (dev) deploys another image with same tag 3.7 (oops)
4. Mary can no longer find the bug as image is different than

what Alex tested

Use immutable
tags

Solution to gotcha

Only push container tags ONCE. This way you
know exactly what is in each container image

Check your Registry documentation

Build your image once in CI

Use specific
container tags in
deployments. We

Treat Docker
tags as
immutable.

deployments. We
suggest the
application
version strategy
(semver)

Force immutable
tags on the
Registry level.

Anti-pattern 2: Baking the configuration
inside container imagesinside container images

Different images per cluster

Hardcoded configuration smells

How to detect this anti-pattern

1. Tags myapp:staging, myapp:qa, myapp:prod1. Tags myapp:staging, myapp:qa, myapp:prod
2. Git branches staging, production, qa
3. Config folder in Git with prod, qa, staging subfolders in

application source code

A single Docker
image should be
deployed to all

Configuration is
loaded externally
and never
hardcoded in the deployed to all

clusters
(QA/Staging/Pro
d)

hardcoded in the
container

Promote the same image

https://unsplash.com/photos/QMjCzOGeglA

Build your image once in CI

Decouple configuration

Solution to hardcoded configuration

1. Kubernetes configmaps1. Kubernetes configmaps
2. Consul
3. etcd
4. Zookeeper
5. Bitnami Sealed secrets/ Mozilla Sops
6. Hashicorp vault

This was good advice even before k8s

https://12factor.net/config

All clusters get a
single image. Each cluster has

different runtime
configurationTest the same

image developers
created

configuration

Anti-pattern 3: Coupling applications with
Kubernetes features/services for no reasonKubernetes features/services for no reason

Assuming a prod namespace

Poor man’s message queue

Container 1 Container 2

Volume

/var/data /app/shared

Coupling to Kubernetes

Common mistakes

1. Expect a certain volume configuration1. Expect a certain volume configuration
2. Expect a certain naming of services/DNS
3. Read information directly from labels and annotations
4. Query the pod itself (e.g. for the IP address)
5. Need a sidecar or init (even in local development)
6. Call other services directly with their API (e.g. vault)

Getting secrets from vault

Making your
life hard

●Developers have a hard time running
the app.
●CI pipelines are super complex
●Integration testing is a mess
●There are too many moving parts

Kubernetes local development tools

Use dedicated solutions

● https://codefresh.io/kubernetes-tutorial/telepresence-2-local-development/
● https://codefresh.io/kubernetes-tutorial/okteto/
● https://codefresh.io/kubernetes-tutorial/local-kubernetes-development-tilt-dev/
● https://codefresh.io/howtos/local-k8s-draft-skaffold-garden/

Don’t use special
Kubernetes
services/APIs

Your application
shouldn’t even
know that it is

services/APIs

Look at special
tools for local
dev

know that it is
running inside
Kubernetes

Anti-pattern 4: Mixing application
deployment with infrastructure deployment deployment with infrastructure deployment

https://cloudposse.com/big-picture/

Terraform Kubernetes provider

https://unsplash.com/photos/B4YHKz6lLrQ

Single pipeline for Infra and app

1. You are wasting time for everybody
(dev/ops)

2. You are making life difficult for developers
3. Your deployments are very complex

Mixing infrastructure and
application deployment

3. Your deployments are very complex
4. Who should look at a broken pipeline? Dev

or ops?

Infrastructure and applications
have a different change frequency

1. In most cases applications change 2x-10x more often than 1. In most cases applications change 2x-10x more often than
infrastructure

2. Deployment of infrastructure/app might take 30 minutes
3. Deployment of application might take 5 minutes
4. For each app deployment you WASTE 25 minutes

https://xkcd.com/303/

Developers don’t
care about
infrastructure

Provide
Developers with
actionable errors

infrastructure
(and they
shouldn’t have to
care)

actionable errors
in pipelines

Applications
should be deployed
on their own

Infrastructure

Don’t abuse
Terraform for
application Infrastructure

deployment should
be separate

application
deployments

Anti-pattern 5: Performing ad-hoc
deployments with kubectl edit/patch by handdeployments with kubectl edit/patch by hand

Kubectl is the new SSH

Deploying via SSH
was never a good
practice

This was true even

Only CI/CD
should deploy to
productionThis was true even

with VMs
production

Don’t deploy to production with
manual kubectl commands

1. Kubectl apply/edit/patch are only for demos and POCs1. Kubectl apply/edit/patch are only for demos and POCs
2. Never change live resources on a cluster
3. You never know what is installed in your cluster
4. Perfect recipe for disaster (configuration drift)

Git is the single
source of truth.
All changes should
pass from Git.
Change resources

Use GitOps

Change resources
by git commit/push

Deploy with a Git commit

1. You know exactly what is in the cluster1. You know exactly what is in the cluster
2. You have a complete history of what/when/by whom
3. You can create/clone your cluster in minutes
4. Roll back by simply going to a previous commit

Avoid configuration drift with
GitOps

Avoid manual
deployments with
SSH

Avoid manual

Always use Git to
know what is in
your clusterAvoid manual

deployments with
kubectl

your cluster

Top 5 – anti-patterns

Recap

1. Don’t use latest tag. Treat tags as immutable1. Don’t use latest tag. Treat tags as immutable
2. Don’t create different images per environment
3. Don’t couple the application to K8s (or Vault)
4. Don’t mix infrastructure with application deployment
5. Use kubectl apply/patch/edit only for demos/POVs

Open a FREE account today at codefresh.io

Anti-pattern 6: Using Kubectl as a
debugging tooldebugging tool

Kubectl is the new SSH

You shouldn’t use
SSH for debugging
VM applications

You shouldn’t
use kubectl for
debugging VM applications debugging
Kubernetes
applications

It is 3am. You are getting paged for
your “sales” app

1. Open terminal1. Open terminal
2. kubectl get ns
3. kubectl get pods –n sales
4. kubectl describe pod prod-app-123 –n sales
5. kubectl svc –n sales
6. kubectl describe …
7. (more kubectl commands…)

If you need kubectl
to inspect
something you

There are
dedicated tools
for Kubernetes

something you
have a gap in your
observability tools

for Kubernetes
debugging today

Trinity of metrics

General purpose dashboards

https://codefresh.io/kubernetes-tutorial/kubevious-kubernetes-dashboard/

Komodor - Kubernetes
troubleshooting

https://codefresh.io/devops/troubleshooting-kubernetes-with-komodor/

Setup metrics and
dashboards. Create
runbooks

Use kubectl as a
last resort. After
the incident add

runbooks

Predict incidents
instead of putting
out fires

the incident add
new metric to
your dashboard

Anti-pattern 7: Misunderstanding Kubernetes
network conceptsnetwork concepts

VMs:
LoadBalancer

Kubernetes:
Service
Load balancer
Ingress
ClusterIPLoadBalancer

Reverse Proxy
ClusterIP
NodePort
Service Mesh
Endpoint

Learn the basics

1. ClusterIP is internal traffic
2. Nodeport is internal/external
3. Loadbalancer is external and also affects

billing in cloud installationsbilling in cloud installations

Learn the network topology

1. Loadbalancer per service (easy but expensive)
2. Single Ingress (cheap but inflexible)
3. Multiple Ingresses (powerful but complex)3. Multiple Ingresses (powerful but complex)
4. With or without service mesh
5. With or without API gateway

If you are a
developer and each
microservice has
100ms latency

5 hops inside the
cluster is 0.5
seconds. Are
your customers
ready for that?

100ms latency
ready for that?

Before Service Mesh/Gateway

After Service Mesh/Gateway

Obsolete Programming libraries

1. Service discovery
2. Custom Load balancing
3. Authentication (e.g. oAuth)3. Authentication (e.g. oAuth)
4. Rate limiting
5. Retries/timeouts
6. Circuit breakers
7. Utilization metrics
8. Encryption, certificates

Understand how
traffic reaches your

Evaluate a
gateway or
service mesh. traffic reaches your

application
service mesh.
Know the trade-
offs

Anti-pattern 8: Using permanent staging
environments instead of dynamic onesenvironments instead of dynamic ones

Most companies
are still stuck with

Adopting
Kubernetes
impacts testing
enviroments like
never beforeare still stuck with

static
environments

never before

Single staging environment

Multiple staging environments

Multiple staging environments

1. Feature conflicts
2. Decreased team velocity
3. Complex clean/setup3. Complex clean/setup
4. Wasted resources

Decreased Velocity

You pay for
resources even
when
environments are

Complex
cleanup/reset
process

Bugs manifest if environments are
not used

Bugs manifest if
wrong
configuration is
present

Dynamic environments

Dynamic environments

1. Feature isolation
2. Better resource utilization
3. Easy cleanup3. Easy cleanup
4. Adapt to any Git Flow

Naming patterns (host/path)

• Pr23 -> pr23.staging.com
• Pr45 -> pr45.staging.com
• Pr39 -> pr39.staging.com

• Pr23 -> staging.com/pr23
• Pr45 -> staging.com/pr45
• Pr39 -> staging.com/pr39

Quality gates and smoke tests

https://codefresh.io/docs/docs/ci-cd-guides/preview-environments/

Fully automated for devs

1. git checkout master
2. git checkout –b feature-a-b-together
3. git merge feature-a3. git merge feature-a
4. git merge feature-b
5. git push origin feature-a-b-together
6. (open PR in Github)

After some minutes http://staging.example.com/feature-a-b-
together is up

Use dynamic
environments
instead of static
ones

Everything
should be
created and
destroyed on
demandones demand

Anti-pattern 9: Mixing production and non-
production clustersproduction clusters

Production should be separate

1. Many tutorials use
production/staging as
different namespacesdifferent namespaces

2. Use only for demos/POVs
3. Don’t do this in real

projects

Every pod in every
namespace can
access every other
pod in every other

You can lock
down
namespaces but
it is complex and
unneededpod in every other

namespace
unneeded

Don’t namespace production

1. Resource starvation
2. Cannot easily upgrade cluster
3. Mistakes will happen3. Mistakes will happen

Don’t namespace production

1. Developer creates a namespace
2. They deploy feature code and run tests
3. Integrations write dummy data or clean DB3. Integrations write dummy data or clean DB
4. A production URL was forgotten inside the

code
5. Production DB is destroyed (!!!)

https://unsplash.com/photos/7x18e4cF-nk

Suggested clusters

1. Production
2. Shadow/Clone of production but with less resources
3. Developer cluster for feature testing3. Developer cluster for feature testing
4. Specialized cluster for load/security testing
5. Cluster for internal tools (e.g. monitoring)
6. Test Cluster for SREs/sys admins

Treat namespaces
as soft partitions in
the cluster.

Treating
namespaces as a
security measure
is a recipe for
disaster

Production should
run on its own
cluster

disaster

Use at least 2
clusters (one is
prod)

Anti-pattern 10: Deploying without memory
and CPU limitsand CPU limits

By default an
application
deployed on
Kubernetes has no

This means that a
single rogue
application can
overwhelm the
whole clusterKubernetes has no

resource limits
whole cluster

As a developer you
need to give some
hints to the
Kubernetes admin

As an operator
you need to make
sure that all
applications have
limits (and Kubernetes admin

for resource
consumption

limits (and
monitor them)

Setting resource limits

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Don’t use the average

How to define correct limits

1. Average consumption is “just average”
2. Take into account traffic bursts
3. Perform load testing3. Perform load testing
4. Learn about minimum/average/maximum
5. Fix your memory leaks
6. Start with a guess and iterate on it (using metrics)
7. Check your programming language documentation

If you put large
values you are
wasting resources
and increase your

If you put small
values, your
application
performance will
suffer (and the and increase your

bills
suffer (and the
cluster will
possibly kill your
app)

Use your metrics

Take it to the next level

https://unsplash.com/photos/pqHRNS8Mojc

Cloud advantages

Embrace autoscaling

Cluster autoscaling
(increase your nodes_

Horizontal autoscaling
(increase your pods)

Vertical autoscaling
(increase your resource
limits)

Just watch your apps auto-scale

https://unsplash.com/photos/vvLBPW3uS4Q

All applications
should have
resource limits
(even non-prod

Make use of
autoscaling
facilities

Let your cluster (even non-prod
clusters)

Let your cluster
work for you

Anti-pattern 11: Misusing health probes

All applications
should have
resource limits
(even non-prod

All applications
should have
health probes

(some coding (even non-prod
clusters)

(some coding
required)

Health endpoints

Kubernetes queries your app

Startup probe. Readiness probe. Liveness probe

Setting probe endpoints

• Startup probes
• Readiness probe
• Liveness probe

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-
probes/

• Custom command
• Http endpoints
• Tcp port check

Learn what the probes do

https://unsplash.com/photos/kBVreEYUzp8

Startup probe

1. Runs only once
2. Checks the initial boot of your application
3. Kubernetes will not send traffic to your app3. Kubernetes will not send traffic to your app
4. Used in combination with liveness probe
5. Mostly for legacy applications

Readiness probe

1. Runs all the time
2. Checks if your application can respond to

traffictraffic
3. If it fails Kubernetes will stop sending traffic

(and try again later)
4. Used when your application needs time to

process requests
5. Could also check for external dependencies
6. Should be separate than liveness probe

Liveness probe

1. Runs all the time
2. Checks if your application is working (and not

deadlocked)deadlocked)
3. If it fails Kubernetes will restart the app
4. Watchdog for stuck/deadlocked applications
5. Should NOT check external depedencies
6. Should be separate than readiness probe

Implement the HTTP endpoints

https://unsplash.com/photos/tG36rvCeqng

Common mistakes

• Not accounting for external services (e.g. DB) in the readiness probe
• Using the same endpoint for readiness and liveness
• Using the existing health endpoint that was created for a Virtual

machine
• Not using the Health facilities of your framework
• Creating too complex healthchecks that cause denials of service
• Creating cascading failures (external services in liveness probe)

Check your programming framework

https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html

Cascading failures

https://unsplash.com/photos/Em2hPK55o8g

Anti-pattern 12: Not using Helm

Anti-pattern 13: Not having deployment
metricsmetrics

Anti-pattern 14: Not having a strategy
for secretsfor secrets

Anti-pattern 15: Attempting to go all in
Kubernetes (even with stateful loads)Kubernetes (even with stateful loads)

d
f
d
ff
f

10 MINUTES

Introduction1
Sample Agenda 20 MINUTES

Section 22
15 MINUTES

Live Demo3
10 MINUTES

Q/A4

Meetup title

Kubernetes Anti-patterns

Kostis Kapelonis

Open a FREE account today at codefresh.io

ICONS TO USE

