
Argo Rollouts
Progressive Delivery and Canary releasesProgressive Delivery and Canary releases



Your host: Kostis Kapelonis

●Developer Advocate

●Company: Codefresh CI/CD/Gitops

●Check codefresh.io/blog

●Ex-Java dev (10+ years)

●Ex-Release manager (5+ years)

●Member of Argo Rollouts Github Org



https://codefresh.io/kubernetes-tutorial/telepresence-2-local-development/



Agenda

1. Vanilla Kubernetes deployments

2. What is progressive delivery

3. Blue/Green deployments

4. Canary deployments4. Canary deployments

5. Intro to Argo Rollouts

6. Demo/Exercise

7. Discussion and Q/A



Vanilla Kubernetes
What you get out of the boxWhat you get out of the box



Default deployment strategies

Recreate

Deletes all pods and then 
starts the new ones

Rolling Update

Replaces old pods with 
new ones (one-by-one or new ones (one-by-one or 
in batches)



Recreate deployment strategy

v1

v1

v1

v1

v2

v2

v1

v1

Time

v1

v1

v2

v2



Rolling Update deployment strategy

v1

v1

v2

v2v1

v2

v2

v2

v2

v2

v1

v1

Time

v2

v2

v1

v1

v1

v1 v1

v2



Issues with default strategies

● The Recreate strategy results in downtime
● Rolling updates can only move forward
● You cannot control who sees new version and who sees old version
● Cannot easily run smoke tests or check metrics in the middle of a 

deploymentdeployment
● Percentage of traffic that sees new version is always associated with 

number of pods (default K8s load balancing)
● In all cases rolling back requires starting a new deployment process



Choosing a strategy

Defined under spec.strategy.typeDefined under spec.strategy.type

Either RollingUpdate or Recreate



Progressive Delivery
Ask for more Ask for more 



We want:

●No downtime at all

●Fast rollbacks (almost instant)

● control the deployment process 
(pause/resume/approve/rollback)(pause/resume/approve/rollback)

● Specify the subset of users that see the new version

● Automate rollbacks using metrics

Photo by Austin Distel on Unsplash



Enterprise deployment strategies

●Deploy new version only to internal users

●Deploy new version on to a specific geographical 
location

●Run smoke tests in production

● Use Prometheus, Datadog, NewRelic to check new 
version

● Automate rollbacks using metrics



Adopting progressive delivery strategies

Blue/Green Canaries

Gradually move live traffic Deploy new version while 
still keeping the old one 
around

Gradually move live traffic 
to new version (while 
keeping the old one as 
well)



Blue/Green deployments
Easiest way to Progressive DeliveryEasiest way to Progressive Delivery



Blue/Green deployment (a.k.a. Red/Black)

v1 v1 v2 v1 v2 v2

Traffic 
Switch

v1

v1

Time

v1

v1

v1

v1

v1

v1

v2

v2

v2

v2

v1

v1

v1

v1

v2

v2

v2

v2

v2

v2

v2

v2



Blue/Green goals and assumptions

Pros

●No downtime

● Instant Rollback

Cons

•Expensive for resources

•Needs 2x capacity
● Simple to setup

● No ingress or service mesh 
required

●Can insert approvals and smoke 
tests

•Needs 2x capacity

•All or nothing approach

•Cannot use metrics



Canary deployments
The flexible way to Progressive DeliveryThe flexible way to Progressive Delivery



Canary deployment

v1 v1 v2 v1 v2 v2

20%80% 50%50% 100%

v1

v1

Time

v1

v1

v1

v1

v1 v2

v1

v1

v2

v2

v2

v2

v2

v2



Canary goals and assumptions

Pros

●No downtime

● Instant Rollback

Cons
•Complex to setup

● Decide who will see new version

●Can insert approvals and smoke tests

●Can use metrics

●Resource efficient

•Complex to setup

•Requires a gateway or 
service mesh



Flexible scenarios

● Choose percentage (20%, 50%, 
100%), (33%, 66%, 80%, 100%)

● Timeout between each stage

● Run tests between each stage

● Check your metrics at each stage



Automatic Rollbacks based on metrics



Deploy on Friday at 5pm

https://unsplash.com/photos/vvLBPW3uS4Q



Argo Rollouts 
Progressive Delivery for KubernetesProgressive Delivery for Kubernetes



What is Argo Rollouts

● A Kubernetes controller (you install it on the cluster)
● It is self-contained
● Argo CD is NOT needed on the same cluster
● Introduces a new Kubernetes Resource (called rollout)
● Only responds to events on Rollouts● Only responds to events on Rollouts
● When a Rollout resource changes it performs a 

deployment according to your defined strategy



The Rollout resource



Argo Rollouts architecture



Installation

1. kubectl create namespace argo-rollouts 
2. kubectl apply -n argo-rollouts -f 

https://github.com/argoproj/argo-
rollouts/releases/latest/download/install.yaml



How the Argo Rollouts controller works

1. It will sit in the cluster waiting for events
2. Events to non-Rollouts resources are ignored
3. If a rollout resources changes the controller will take over

1. First deployment – just deploy the app
2. Subsequent deployment follow the defined strategy from the spec2. Subsequent deployment follow the defined strategy from the spec

● You can mix and match with normal deployments
● You can change the rollout with kubectl, git commit, api

event, pipeline etc.



Argo Rollouts CLI



Argo Rollouts UI



Blue/Green deployments
Using Argo RolloutsUsing Argo Rollouts



Blue/Green deployments

1. The simplest way to start using Argo Rollouts
2. The major settings are the service for blue and for green
3. Active service is what your users will see
4. Preview service can be used for smoke test
5. You can pause the promotion or have a timeout5. You can pause the promotion or have a timeout



Blue/Green deployments



Blue/Green deployments

1. Change the image in rollouts
2. kubectl apply –f rollout.yaml
3. All your users see the old version
4. Run smoke tests on preview service
5. Use the “kubectl argo rollout promote” command to move 5. Use the “kubectl argo rollout promote” command to move 

everybody to the new version



Initial state

https://github.com/benc-uk/kubeview



New version active (all users still on old version)



New version active (all users view new version)



Old version discarded (back to initial state)



Canary deployments
Using Argo RolloutsUsing Argo Rollouts



Demo app

1. https://github.com/kostis-codefresh/summer-of-k8s-app-
manifests

2. https://github.com/kostis-codefresh/summer-of-k8s-app



https://www.getambassador.io/summer-of-k8s/ship/week3/

https://a8r.io/slack (at the #summer-of-k8s channel)


