Software testing anti-patterns

Make IT
October 2019
Kostis Kapelonis

Antipattern — common mistake

Things | love

—
—

Things | write

Konstantinos Kapelonis
Luke Daley

m MANNING

1 ¥r¥¢ ¥r ¥¢ Changed how we do software testing é’/ﬂ/'

July 26, 2017

Format: Paperback | Verified Purchase

This book was great in teaching how and why to use Spock for testing. We have since built our testing
methodologies around Spock based on technigues learned from this book. Our non-technical staff finds Spock
tests much easier to understand than straight JUnit. This book was very readable and had very good examples.

Things | blog

Software Testing Anti-Pattern List

. Having unit tests without integration tests
. Having integration tests without unit tests
. Having the wrong kind of tests

. Testing the wrong functionality

. Testing internal implementation

. Paying excessive attention to test coverage
. Having flaky or slow tests

- Running tests manually

O 00 ~y O b A N N

. Ireating test code as a second class citizen

[N
=

. Not converting production bugs to tests

=
[EEY

. Treating TDD as a religion

s
P

. Writing tests without reading documentation first

[
A

. Giving testing a bad reputation out of ignorance

http://blog.codepipes.com/testing/software-testing-antipatterns.html

Things | blog

* Spftware Testing Anti-patterns (codepipes.com)

465 points by kkapelon & months ago | hide

o All Users
100.00% Pageviews

pl igation St Y

Pageviews ¥ VS. Selectametric

® Pageviews

40,000

20,000

+ Add Segment

| past | web | favorite

| 166 comments

Apr 17,2018 - Apr 23,2018 ~

Day Week Month ﬁ -..

75 Apr 18 Apr 20 Apr 21 Apr22 Apr 23
Primary Dimension: Page PageTile Other =
Secondary dimension + | Sort Type: q advanced @ ‘D =_ -"'- HIl)
Unique Pageviews Avg. Time on Page
Page € Entrances Bounce Rate % Exit Page Value
46,795 42,508 00:04:28 40,752 90.95% 87.09% $0.00
% of Toral: 100.00% % of Total: 100.00% Awg for View: % of Total: 100.00% Avg for View: Awg for View: % of Total: 0.00%
(46,795) (42,508) 00:04:28 (0.00%) (40,752) 90.95% (0.00%) §7.09% (0.00%) ($0.00)
esting/software-testing-antipatterns.h

O 1. Jl“ml 9! g P 43,884 (93.78%) 40,123 (94.39%) 00:05:48 39,962 (98.14%) 91.53% 90.15% $0.00 (0.00%)

https://news.ycombinator.com/item?id=16894927

Current Work
“’ Docker based CI/CD
solution for Helm/

codefresh Kubernetes
deployments

Current Work

PI pe' Ine N ame Documentation Support TRIGGER PIPELINE
Release a new update to prod. Must be apdafadsf asdsd....

COMPLETED STEPS START TIME DURATION TRIGGER R
" 12 VIEW YAML 1/8/2018 22:22 10m COMMIT on g Idan's Gitlab - codefresh-io/sf-secrets by O Idan Arbel b, DOWNLOADLOG
Pipelines
= [puse]
I + Initialization 2435 PHASE DEPENDENCY
BUILD = BUILD = UNIT =
Kubernetes
2.43s 2435
Helm Releases » GITCLONE L GITCLONE 1 GITCLONE
o « * Clonning main repository o + * Clonning main repository + * Clonning main repository
Docker Swarm
243s 243s
o 2 GITCLONE 0 . GITCLONE ¢ GITCLONE
s ° Clonning main repository » ° Clonning main repository : + ° Clonning main repository
Images
Repositories m
2.43s 2435
Helm Charts @ | < oo gl Saw
Clonning main repository Clonning main repository
2435 2435
Account Settings > GITCLONE GIT CLONE
. R Clonning main repository . % Clonning mainrepositary
User Settings

W)

codefresh

8

Current

W

HELM Releases

prod@GoogleCloud

demochat-helm-value-ref

(W Install complete

codefresh

A Helm chart for Kubernetes

demochat-master

Rellback to 8

A Helm chart for Kubernetes

wordpress

Install complete

demochat-prod

gd..‘ w Upgrade complete

CLUSTER
cluster-
1@Firstkubernetes

CLUSTER
cluster-
1@FirstKubernetes

CLUSTER
cluster-
1@FirstKubernetes

Web publishing platform for building blogs and websites.

https://github.com/bitnami/bitnami-docker-wordpress

CLUSTER
cluster-
1@FirstKubernetes

or

Help
REVISION MODIFIED
1 3 months ago
REVISION MODIFIED
10 2 months ago
REVISION MODIFIED
1 3 months ago
REVISION MODIFIED
9 2 months ago

ADD REPOSITORY

afew seconds ago

CHART —
s
demochat-0.1.0 ik

P RUNTEST X DELETE <> BADGE

CHART —
) oy
demochat-02.0 Chieskia

» RUNTEST X DELETE <> BADGE

CHART

wordpress-0.7.8 RERLOYED

P RUNTEST X [

CHART
demochat-0.2.0

codefresh

Current Work

cg; -+ Mmaven (\')

Docker Tutorial | June 20, 2018 COdefI’QSh

Using Docker from Maven and
Maven from Docker

https://codefresh.io/blog/

7
|
\

©) Kostis Kapelonis https://codefresh.io/features/

10

Testing pyramid

/ | ntegration\
/ Unit \

Some definitions

THIS IS TRUTH

12

Unit tests

Require ONLY source code
Everything that is external is mocked
Mainly involve business logic testing
Focus is on a single method/class
Run with xUnit or similar framework
Easy to setup and run

Fast (20- 500ms)

Bas
bas
bas

et bas
ket.adc

Unit test example

ket = new Basket()
(“Samsung 4k TV”, 600)

ket.adc

(“Sony PS4”, 300)

basket.getValue() == 900

Integration/Service/Component test

Uses a database
Uses the network to call another component

Uses a queue/webservice
Reads/writes files, performs 1/O

Needs the application to be deployed (even
partially)

Can be complex to setup and run

Slow (seconds or even minutes)

Integration test example

Basket basket = new Basket(....)
Customer customer = new Customery...)
customer.checkout(basket, cc, inventory)

Assert invoices, cc charge, inventory subtraction
etc.

compile

process—classes

generate-test—sources

process-—tesSt—Sonrces

generate-test—

Iresources

process—EeSt-resonrces

test-compile

process—-test-classes

EeaE

prepare-package

package

pre—-integration-test

integration-test

post-integraction-test

werify

Maven lifecycle

compile the source code of the project.

post-process the generated files from compilation, for example to do bytecode enhancement on Java classes.
generate any test source code for inclusion in compilation.

process the test source code, for example to filter any values.

create resources for testing.

copy and process the resources into the test destination directory.

compile the test source code into the test destination directory

post-process the generated files from test compilation, for example to do bytecode enhancement on Java classes. Fo
run tests using a suitable unit testing framework. These tests should not require the code be packaged or deployed.

perform any operations necessary to prepare a package before the actual packaging. This often results in an unpack
2.1 and above)

take the compiled code and package it in its distributable format, such as a JAR.

perform actions required before integration tests are executed. This may involve things such as setting up the require
process and deploy the package if necessary into an environment where integration tests can be run.

perform actions required after integration tests have been executed. This may including cleaning up the environment.

run any checks to verify the package is valid and meets quality criteria.

17

Antipattern 1 — Only unit tests

18

Antipattern 1 — Only unit tests

Usually in small companies

Developers who have never seen integration
tests

Integration tests were abandoned
Test Environment is “hard” to setup

We need integration tests

Type of issue Detected by Unit tests Detected by Integration tests
Basic business logic yes yes
Component integration problems no yes
Transactions no yes
Database triggers/procedures no yes
Wrong Contracts with other modules/APls no yes
Wrong Contracts with other systems no yes
Performance/Timeouts no yes
Deadlocks/Livelocks maybe yes

Cross-cutting Security Concerns no yes

Antipattern 1 — Solution

Dockerize your application
Launch containers after every Pull Request
Test features BEFORE merging to master

Anybody should be able to launch all or part
of the application with a single command

Antipattern 2 — Only integration tests

22

Antipattern 2 — Only integration tests

Usually found in big companies
“Unit tests are a waste of time”

People were forced to write unit tests for code
coverage requirements

“Unit tests are useless, they never fail”
“Value comes only from integration tests”

We need unit tests

ntegration tests are complex
ntegration tests are slow
ntegration test are hard to setup and debug

Integration tests are complex

25

Let’s test a service

public class UserService { mEth Dd A

public User findUser({Long id) {

;i method B

public String serializeResponse(Payload payload) {

! method C

public void checkoutBasket{Basket basket) {

¥

method D

public boolean checkInventory({Basket basket}) {

26

Let’s test a service

e A Java service
e 4 methods

e CC = cyclomatic complexity (hnumber of code
paths)

Service
A ¢
e B oc=3
N CC=5 D
CC=2

Only unit tests

e Canwrite2+5+ 3+ 2 =12 unit tests
* Get 100% of business logic
* The full application has other more services

Service
A ¢
e B oc=3
N CC=5 D
CC=2

Only integration tests

e Should write2 *5 * 3 * 2 =60 tests

* People cheat and only choose some
“representative tests”

e Usually happy path scenarios

Service

Inpu\A A \ B /CCC_B\ output
CC=2 - D /

CC=5

CC

Il
N

Hard to test corner cases

* A special scenario in C requires....

* A special scenario in B that requires...

* A special scenario in A

Service

|ﬂlet\

C
A / output
Cczz\ccB=5 CC=3\ D /

CC

|
N

30

Easy to test corner cases

* With unit tests only a single method is focused
e Corner case can be created on the spot

* Very easy to test

Unit Test

case 1 > -

case 2 — | (C | —— output

e ._

CC=3

Integration tests are slow

32

Integration tests are slow

* Two developers Mary and Joe
* Joe writes only integration tests

* Mary writes unit tests PLUS some integration
tests

Test assumptions

Each unit test takes 60ms (on average)
Each integration test takes 800ms (on average)

The application has 40 services like the one
shown in the previous section

Mary is writing 10 unit tests and 2 integration
tests for each service

Joe is writing 12 integration tests for each
service

Speed comparison

e Joe waits 6 minutes after a commit
* Mary waits 1 minute

g Having only integration tests Having both Unit and Integration tests
Time to run
(Joe) (Mary)
Just Unit tests N/A 24 seconds
Just Integration s
6.4 minutes 64 seconds

tests

All tests 6.4 minutes 1.4 minutes

35

Integration tests are hard to debug

36

E-Shop application

You write tests for the typical eshop
applications

Customers buy products
Discounts on prices
Warehouse inventory

Credit card processing

Result from integration tests

Integration tests result

Result from all tests

Integration tests result Unit tests result

39

Anti-pattern 2 - summary

ntegration tests are complex
ntegration tests are slow
ntegration test are hard to setup and debug

Corollary

* We need both unit and
Integration tests

* Having only one type is an anti-
pattern

Antipattern 3 — Wrong kinds of tests

42

Amount of tests for each type

e Test pyramid is only a suggestion

* You need to decide what your application is
doing

* Different applications have different needs

/ Integration\
/ Unit \

Example 1

Command Line Utility

Example 2

Payment Gateway

/ Integration \

/ unit \

Example 3

Website Creator

Antipattern 4 — Testing the wrong
functionality

47

[1F]

Co

apps
auth
channels
rai
permissions
route

rss
settings
themes
url
labs.js
slack js

webhooks.js

] xmirpes

m D3

i IXR

il Requests
i@ SimplePie
il Text

B certificates
I css

B customize
il fonts

B images
s

il pomo

i random_compat

B rest-api

il theme-compat

le folders

account
activities

admin
attachments
auth_sources
auto_completes
boards
calendars
commaon
context_menus
custom_field_enumerations
custom_fields
documents
email_addresses

enumerations

48

Deployment time

49

Two bugs after deployment

1. Customers cannot check-out their cart
halting all sales

2. Customers get wrong recommendations
when they browse products.

Obviously first one is critical, second one is not

Code severity

Critical code - This is the code that breaks often,
gets most of new features and has a big
impact on application users

51

Code severity

Core code - This is the code that breaks
sometimes, gets few new features and has
medium impact on the application users

52

Code severity

Other code - This is code that rarely changes,
rarely gets new features and has minimal
impact on application users.

53

Write tests for code that

e Breaks often
* Changes often
e |s critical to the business

54

Antipattern 5 — Testing internal
implementation

55

Antipattern 5 — Testing internal
implementation

Worse kind of tests
Wasted time the first time they are written

Wasted time when a new feature is added
They give a bad name to unit testing

Closely connected to antipattern 2 (no unit
tests)

Mostly relevant for unit tests

Rules of unit testing

=

/

57

1. Test behavior and not state

-

/

58

2. Test behavior and not state

-

/

59

3. If this is your first unit test

...test behavior and not state!

60

Testing state — bad Example

Customer

Name

Surname

Address

Phone

Type

Testing state — bad Example

* Customer type O means “guest” and 1 means
“registered user”

* 10 unit tests are written that verify this
particular field

Customer

Name

Surname

Address

Phone

Type

Testing state — bad Example

* Customer type 2 means “affiliate” and 3
means “premium user”

20 more unit tests are written that verify this
particular field

Customer

Name

Surname

Address

Phone

Type

Testing state — bad Example

40 tests in total, all looking at this field

10 tests for guests

type=0

Customer 2

Mame *

Surname o 10 tests for registered users
Address »

R » type=1

e | ===

_ 10 tests for affiliates
10 tests for premium users

type=3 type=2

64

New feature from customers

65

New feature from customers

. For registered users, their email should also
oe stored

. For affiliate users, their company should also
oe stored

. Premium users can now gather reward
points.

40 tests are now broken

Customer

MName

Surmame

Addrass

Phane

10 tests for guests

CustomeriD

emall

customer|D

customeriD

Company

Reward paints

h“‘
-
'-""'L

10 tests for premium users

type=3

"'*-r..x 10 tests for registered users

\""mn type=1

L
.y
..X
iy
-
b

10 tests for affiliates

type=2

67

40 tests are now broken

This is why some people hate unit tests

“I try to implement a feature and all tests are
broken”

“I spend more time with tests than actual
code”

Damage is already done

""--.X 10 tests for registered users

"""" » type=1

10 tests for affiliates

type=2

Testing behavior instead of state

10 tests for guests

verify loginAsGuest()

t
Customer ;"'
+
*
!“
\ (,a'{e’ ..-" 10 tests for registered users
po® P A —- » Vverify register()

-
* --.-‘h----
---'h-

10 tests for affiliates
y verify showAffiliateSales()

10 tests for premium users

verify getPremiumDiscount()

69

Testing behavior instead of state

* Business needs do not affect tests
e At most 10 tests will break (not all of them)

* New fields can be added/removed in
customer object

10 tests for guests

verify loginAsGuest()

Customer /’
(e‘ /' 10 tests for registered r
X co e ests for registered users
1911 D T » verify register()
P e
A |
:' ----) 10 tests for affiliates
y verify showAffiliateSales()

10 tests for premium users

verify getPremiumDiscount()

Good names of Test Methods

guestUsersDoNotGetRewardPoints()
premiumCustomerShouldGetDiscount()
maximum100AwardPointPerBasket()
customerWithoutEmailDoesNotGetNewsletter()
digitalGoodsNeverHaveWeight()
orderHistoryAlwaysIncludesShippingAddress()

|

Bad names of Test Methods

checklnvoiceType()

billingTest1()

billingTest2()

testJIRA2345()
customerObjectHasCorrectFieldsTest()
productsTypeCshouldBelongToCategoryA()

Antipattern 6 — Paying too much
attention to code coverage

73

Code coverage is a trap

74

How much code coverage is enough?

75

Code coverage everywhere

It is easy to understand

It is easy to measure

There are many tools for measuring it

Also familiar to other project stakeholders
Beloved by QA departments and managers

| will tell you a secret

| will tell you a secret

A project can be full of bugs and
still have 100% code coverage

Sample application

1 package gr.jhug.sample;

2

3 public class MyCalculation {

4
5_
6
7
g)
9 |

public int velocity(int angle, int direction) {
return ((3 * (4* angle - direction))* 3) / (7 * (direction - (2 * angle)));
}

79

14

100% Coverage

16 public class MyCalculationTest {

@Test
public void simpleEntry() throws IOException

MyCalculation myCalc = new MyCalculation();

assertEquals("Expected an entry",-5,myCalc.velocity(3, 4));
assertEquals("Expected an entry",-2,myCalc.velocity(10, 2));
assertEquals("Expected an entry",-2,myCalc.velocity(8, 3));
assertEquals("Expected an entry",-3,myCalc.velocity(6, 6));
assertEquals("Expected an entry",-3,myCalc.velocity(5, 3));

I*1 Problems @ Javadoc [Declaration B Console =3 Progress | [m= Coverage X

MyCalculationTest (Apr 9, 2019 11:50:28 AM)

Element Coverage Covered Instructi Missed Instructia
¥ = sample-calculation H 100.0% 69 0
» & src/main/java 0 100.0%: 21 0

» B src/test/java I 100.0% 48 0

Bug if direction is double the angle

1 package gr.jhug.sample;

2

3 public class MyCalculation {

4

e public int velocity(int angle, int direction) {

6 return ((3 * (4* angle - direction))* 3) / (7 * (direction - (2 * angle)));
7 }

8 \F

9 |

= Failure Trace &
40 java.lang.ArithmeticException: / by zero

= at gr.jhug.sample.MyCalculation.velocity(MyCalculation.java:6)

= atgr.jhug.sample.MyCalculationTest.simpleEntry(MyCalculationTest.java:30)

81

| will tell you a secret

Do not try to achieve a specific
number (such as 100%)

| will tell you a secret

Bigger numbers require more
effort (logarithmic?)

| will tell you a secret

Getting from 80% to 100% is
much more difficult than 0% to
20%

| will tell you a secret

N
7

Effort required

0% 100%
Code Coverage _

rd

85

| will tell you a secret

Increasing code coverage has
diminishing returns

N

Value from tests

| will tell you a secret

0%

Code Coverage

N

100%

87

| will tell you a secret

High code coverage =
high code quality

Give me a number!

89

Best code coverage

20% is the magic
number

Pareto principle

20% of your code is
responsible for 80% of your
bugs

Pareto principle

Pareto principle

Try to achieve 100% coverage

of your CRITICAL code, (which
itself is probably 20% of total
code)

Antipattern 7 — Flaky or slow tests

94

Antipattern 7 — Flaky or slow tests

aky tests are a well known problem

F

They hide real bugs

They make tests untrustworthy
People start ignoring tests
Everything goes downhill afterwards

Antipattern 7 — Flaky or slow tests

Build 1 regression
N | | | | | | |
N+1 | [.
N [T e
N+1 | A e

1 regression OR 2 flaky tests

96

Antipattern 7 — Flaky or slow tests

* As we go up in pyramid tests become
slow/flaky

e Ul tests are notoriously problematic

* Test environments parity
/ Integration\
/ Unit \

Antipattern 7 — Solution

Fix flaky tests
Isolate them in a different test suite
Tests should be rock solid

Failure of test means immediate problem with
code

Exclude tests that are broken for a temporary
reason

Antipattern 8 — Running tests manually

99

Quiz:

How many steps do you need to setup and run
your whole test suite?

Al

Wrong answers

Prepare database

Edit settings file

Prepare test environment
Run tests

Cleanup environment

Correct answer

e Before commit: single command to run tests

e After commit: Tests run automatically, with
no human intervention

Correct answer

Dev
Features
| 2 3 4 5
| | | | I | | | |
1 2 3 4 5
Test Results
.. o
Time
1 2 3 4 5
| | | | e | | 1 |
1 2 3

Test Results

103

Quiz:

What is the role of the test engineer?
What is the role of the QA department?

Test engineers

Test engineers should NOT run tests

Test engineers should write NEW tests and
add them in the automatic test suite

QA department should NOT run tests

QA department should only evaluate results
from automatic test suites

Cl server actually runs 99% of tests
1% of smoke GUI tests run manually

Testing strategy
oer - [

.(. -
Package
Unit tests
1 Fully
Create Test environment Automated

Integration Tests

Destroy Test environment

Deploy to QA

Ul Tests

Cleanup - -

106

Antipattern 8 — Solution

Automate everything
Make local testing easy for developers

Cl server should run test for each feature
branch in a transparent manner

You should also have
smoke/acceptance/production tests

Antipattern 9 — Not respecting test
code

108

Antipattern 9 — Not respecting test
code

* Developers pay great attention to main code
* They treat test code as second class citizen

* Test code is hacky and does not follow DRY,
SOLID and KISS principles

| will tell you a secret

| will tell you a secret

Test code is as important as
feature code

Antipattern 9 — Solution

Create common abstractions for test data
creation

Centralize common assert code
Refactor test code when needed

Apply KISS, SOLID and DRY to test code
Do not leave tech debt in test code

Antipattern 10 — Not converting
production bugs to tests

113

Quiz:

You start working on an unknown project with
zero tests. Where do you start testing?

Write test for code that

e Breaks often
* Changes often
e |s critical to the business

115

How do you find critical code

See what bugs appear in
production

How do you find critical code

...and write unit/integration
tests for them

Production bugs

* Have passed all QA gates (since they appeared
in production already)

* Are great for regression testing

Production bugs

Should only happen once!

New project — zero tests

Do NOT start testing code you understand

Do NOT start testing code that requires easy
tests

Do NOT start testing the first folder in your file
system

Do NOT start testing what a colleague
suggested

New project — zero tests

First test suite should be
production bugs

Antipattern 11 — TDD madness

122

Antipattern 11 — TDD madness

* Test driven development says that tests are
written before code

* Add test, run test, refactor, repeat

| will tell you a secret

You can write tests

Before the feature implementation
During the feature implementation
After the feature implementation
Never (see “Other” code severity)

TDD requires a spec

If you have no spec TDD is a
waste of time

TDD is not needed

~or research code

~or throw away code

-or quick spikes/POCs
~or weekend projects

~or startups that pivot all the time

Antipattern 12 — Not reading test
framework documentation

128

A professional is..

..somebody who knows the
tools of the trade

Antipattern 12 — Not reading test
documentation

Do not re-invent the wheel

Do not write new test utilities

Do hot create “smart” test solutions
Do hot copy paste test code

Do not write “helper” test methods

Do not ighore off-the-self test libraries

Research and learn

Your test framework and its
capabilities

Learn about

Parameterized tests

Mocks and stubs (and spies)
Test setup and tear down
Test categorization
Conditional running for tests
Assertion grouping

Learn about

Test data creators

Http client libraries
HTTP mock libraries
Mutation/fuzzy testing
Db cleanup/rollback
Load testing

Assume that your “smart” solution

...1s already invented and
available on the internet

The end

Software Testing Anti-Pattern List

. Having unit tests without integration tests
. Having integration tests without unit tests
. Having the wrong kind of tests

. Testing the wrong functionality

. Testing internal implementation

. Paying excessive attention to test coverage
. Having flaky or slow tests

- Running tests manually

O 00 ~y O b A N N

. Ireating test code as a second class citizen

[N
=

. Not converting production bugs to tests

=
[EEY

. Treating TDD as a religion

s
P

. Writing tests without reading documentation first

[
A

. Giving testing a bad reputation out of ignorance

http://blog.codepipes.com/testing/software-testing-antipatterns.html

135

