
Docker anti-patterns

Make IT
October 2019

Kostis Kapelonis

1



Antipattern – common mistake
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Things I love

Testing Automation
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Current Work

Docker based CI/CD 
solution for Helm/ solution for Helm/ 
Kubernetes
deployments
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Current Work
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Current Work
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Current Work

https://codefresh.io/blog/

https://codefresh.io/features/
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Why

• Container usage is exploding
• Land rush for tools/solutions/companies
• Kubernetes/Nomad/Docker Swarm all use 

containerscontainers
• Containers used for CI/CD
• Reddit /devops and /docker suffer from wrong 

advice
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Docker = Containers
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Docker advice

Too many articles talk about 
Dockerfiles. Too few talk about Dockerfiles. Too few talk about 
Docker images
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Dockerfile anti-patterns

• https://docs.docker.com/develop/develop-
images/dockerfile_best-practices/

• https://www.docker.com/blog/intro-guide-to-
dockerfile-best-practices/dockerfile-best-practices/

• Do not use `latest` in your Dockerfile or 
deployments
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Antipattern 1 – VMs and containers
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Docker advice

Docker images are NOT virtual 
machines.machines.
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VM questions
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VM questions
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Trying to reuse VM knowledge
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People abuse VM tools

• Configuration management is not the answer
• Ansible/Puppet/Chef/Salt are CM tools
• Most solutions tried to shoe-horn container 

supportsupport
• System administrators were baptized Service 

Reliability Engineers
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Learn containers from scratch
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Common issues

• Docker tags do not work like Git tags
• Docker has different security model than VMs
• New caching model for layers
• Containers need orchestration• Containers need orchestration
• Auto-scaling, monitoring, logging, errors need 

a different approach
• Transition from VMs to containers is harder
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Common questions

• How do I update files in a container?
• How do I ssh to a container?
• How do I get logs outside of a container?
• How do I apply security fixes to a container?• How do I apply security fixes to a container?
• How do I run multiple programs to a container
• How do I backup/restore a container?
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Answer

You don’t. Forget your You don’t. Forget your 
VM knowledge
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Antipattern 2 – Opaque Dockerfiles
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What does this dockerfile do?
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You need access to Puppet server
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What does this dockerfile do?

• Building the image requires access to Puppet
• Different puppet server -> different image
• Non-repeatable builds
• Docker image requires puppet knowledge• Docker image requires puppet knowledge
• Application version is undefined
• Team just used the existing VM puppet files 

(see antipattern 1)
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How to fix this dockerfile

Docker images should be Docker images should be 
transparent and 
repeatable
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What does this dockerfile do?
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Transparent Docker images

• Anyone should be able to build the image
• Building multiple times results in the same 

image
• Application version is visible• Application version is visible
• Changing the version of application should be 

easy
• Other good practices apply (e.g. multi-stage 

builds)
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Antipattern 3 – Side effects in Docker
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Repeatable Docker images

Building an image should Building an image should 
have ZERO side effects
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What does this dockerfile do?
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This Dockerfile is not idempotent

• Copies source code (OK)
• Downloads Dependencies (OK)
• Runs Unit tests (OK)
• Publishes NPM module (NOT OK)• Publishes NPM module (NOT OK)
• Binds to port 8080 (OK)
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Repeatable Docker images

Is it safe to build this Is it safe to build this 
dockerfile twice?
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The golden rule for Dockerfiles

Dockerfiles are NOT 
glorified bash scripts
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Inside a Dockerfile don’t:

• Perform Git commits or create Git tags
• Upload files or call POST requests
• Cleanup or tamper with Database Data
• Send notifications to external systems• Send notifications to external systems
• Perform destructive actions
• Tamper with shared network files
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Inside a Dockerfile do:

• Clone source code
• Download dependencies
• Compile/package code
• Fetch extra resources (GET calls)• Fetch extra resources (GET calls)
• Process/minify local resources and assets
• Tamper only with local files
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Learn how Docker caching works

Unsafe actions in Unsafe actions in 
Dockerfiles break the 
caching
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What does this dockerfile do?

38



Tampering with the database

1. You run integration tests and they break
2. You fix your source code
3. Docker will NOT rerun the mysql commands
4. Your tests will now use old data4. Your tests will now use old data
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No side effects in Dockerfiles

• You should be able to build N times
• Building an image should not affect anything 

external
• Each build must result in the same image• Each build must result in the same image
• Remove unsafe actions from Dockerfiles (and 

place them in CI/CD)
• Only idempotent actions in Dockerfiles
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Antipattern 4 – Types of Images
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Don’t confuse types of images

Each organization must Each organization must 
have at least two types 
of Docker images
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Two types of images

• Deployment images
• Sent to production 

servers
• They contain the 

• Tooling images
• Used by developers, 

ops, CI/CD system
• Have source code, tools, • They contain the 

application code and 
NOTHING else

• Have source code, tools, 
compilers, frameworks

• Cloud tools, linters, 
testing facilities etc.

• Never deployed 
anywhere
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Production images: lean and fast
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Production images

• Small (use multi-stage builds)
• Only ship application code in the final state
• Minimal to avoid security issues
• No dev tools, no test tools (git, linters)• No dev tools, no test tools (git, linters)
• No curl, wget, nc, etc
• Battle hardened, security tested
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CI/CD images: kitchen sink
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CI/CD images: kitchen sink

• Used by developers and CI/CD system
• Size of image can be big 
• Contain pure source code, dev tools
• Test utilities, cloud utilities included• Test utilities, cloud utilities included
• Used to setup dev environment
• Have support role, NEVER deployed
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Do not ship dev environments

48



Multi-stage builds
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Single stage image
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Single stage image

• This image is 700MB
• It is a full Debian/Ubuntu environment
• Contains Git, Mercurial, SSH client, 

subversion, curlsubversion, curl
• It has a full blown GO dev environment
• This is an attacker’s dream
• Very slow to deploy
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Multi-stage builds
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Multi-stage builds

• This image is 6 MB
• It contains just the executable
• Minimal attack vector(not even a shell)
• Harder to exploit
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• Harder to exploit
• Very fast to deploy



Check your Docker images

30MB for Go app, 150MB 30MB for Go app, 150MB 
for Java, other 
languages in-between
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Check your Docker images

Do not ship GIT, gcc, curl, test Do not ship GIT, gcc, curl, test 
frameworks etc. in 
production
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Antipattern 5 – Different env images
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Why immutable containers

• Containers (unlike VMs) are immutable
• Build once and promote to environments
• You deploy what you tested
• Multiple promotion stages• Multiple promotion stages
• Each release is a new build (brand new)
• Need help from CI/CD
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Promote the same image
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Golden rule for deployments

A Docker image is built A Docker image is built 
once for ALL 
environments
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Different images per environment
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Different images per environment

• No guarantee that what you tested is the 
same

• Developers abuse QA image to insert debug 
toolstools

• Configuration drift is possible (also a big 
problem with VMs)
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Fix your CI/CD system

• Do not build multiple times the source code
• Promote image between pipelines
• Promote image between different registries
• All configuration should be external• All configuration should be external
• The same Docker image ID is used in the 

whole lifecycle
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Antipattern 6 – Building in production
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Very common anti-pattern

• Building Docker images in production servers
• Abuse GIT/Ansible as deployment tool
• Each server is responsible for its own image
• No central image repository• No central image repository
• People are trying to reuse VM knowledge (see 

anti-pattern 1)
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Building in production servers
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Building in production servers

• Git is not a deployment tool
• Inbound git access has security issues
• This is a VM technique (anti-pattern 1)
• Different image per server (anti-pattern 5)• Different image per server (anti-pattern 5)
• You don’t know what docker image is 

deployed
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Central Docker storage

Learn/Use Docker Registries
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Use Docker registries

68



Use Docker registries

• Central repository of past releases
• All servers run same image
• Rollback is trivial
• Secure outbound access + DMZ• Secure outbound access + DMZ
• Source code never leaves the premises
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Use Multiple Docker registries

1. Dev Docker registry (auto-cleaned)
2. QA Registry

– Holds Release candidates
– Promoted from Dev– Promoted from Dev

3. Prod Registry
– Deployed in production
– Security scans
– Audit trail
– Promoted from QA
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Use Docker registries

• Many open source solutions
• Many proprietary solutions
• Well defined API
• Looking to the future - OCI• Looking to the future - OCI
• Docker registries for Helm charts as well
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Antipattern 7 – Using Git hashes
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Before containers
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Containers as deployment artifact
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Containers in CI/CD
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Corollary from anti-patterns 5 - 6

• Build Docker images once• Build Docker images once
• Promoted between Docker

registries
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Docker images are the central entity

Talk about Docker tags instead Talk about Docker tags instead 
of Git hashes
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Git hash as hand-off
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Docker tag as hand-off
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Don’t talk about Git hashes

• Everybody should talk about Docker tags
• Docker registry is the central place to pick 

releases for QA/Ops
• CI/CD pipelines should work with Docker• CI/CD pipelines should work with Docker

images
• Build image once and promote image in the 

software pipeline
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Rolling back
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Rolling back
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Change your CI/CD pipelines

Git
hash

Git
hash

Git
hash

Git
hash

Git
hash

Docker
image

Git
hash

Docker
image

Docker
image

Docker
image

Docker
image

Docker
image
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Antipattern 8 – Hardcoding secrets
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Do not hardcode secrets and conf

• People still hardcode configuration (anti-
pattern 1)

• People still create different images per 
environment (5)environment (5)
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Do not hardcode secrets and conf
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Golden rule for Docker deployments

A Docker image should be A Docker image should be 
configuration agnostic
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Golden rule for Docker deployments

A Docker image should fetch A Docker image should fetch 
configuration during runtime 
(and not buildtime)
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Runtime configuration
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Runtime configuration

https://12factor.net/config 90



Golden rule for deployments

A Docker image is built A Docker image is built 
once for ALL 
environments

91



Multiple solutions for conf/secrets
Config-maps

Lyft Confidant
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If your Docker image…

• …has hardcoded IPs
• …contains passwords 

and secrets
• …mentions specific • …mentions specific 

URLs of other services
• …has tags like foo-dev 

or foo-qa or foo-staging

You are doing it wrong!
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Antipattern 9 – Poor mans’ CI
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“Shift your CI scripts to docker build“
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Creating Dockerfiles that do too much

Dockerfiles are not Dockerfiles are not 
glorified bash scripts
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Use CI/CD pipeline as intended

S3 Checkout Sonar Lint Build Unit tests S3 
upload
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Don’t abuse Docker as CI/CD

Side effects are only allowed in Side effects are only allowed in 
the CI/CD pipeline
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Antipattern 10 – Docker afterthought
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Creating Dockerfiles that do too little

Don’t use docker as a simple Don’t use docker as a simple 
package format
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What does this dockerfile do?

How was the jar created???
What is the app version???
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Example taken from Spring Boot Guide
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Creating Dockerfiles that do too little

This dockerfile expects a full This dockerfile expects a full 
Java environment
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Before containers
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Containers in CI/CD
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Fixing the Dockerfile

Exercise 1- multistage
Exercise 2 – Layer caching
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Change your CI/CD pipelines

Git
hash

Git
hash

Git
hash

Git
hash

Git
hash

Docker
image

Git
hash

Docker
image

Docker
image

Docker
image

Docker
image

Docker
image
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One command for all

• docker build . -t my-tag (developer)
• docker build . -t my-tag (operator)
• docker build . -t my-tag (ci/cd server)
• docker build . -t my-tag (test engineer)• docker build . -t my-tag (test engineer)
• docker build . -t my-tag (release engineer)
• docker build . -t my-tag (security analyst)
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Conclusion

10 Docker antipatterns for 10 Docker antipatterns for 
MANAGING docker images
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Antipattern 1

Attempting to use VM 
practices with Containers

Solution: Understand what 
containers are
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Antipattern 2

Creating Docker files that are 
not transparent

Solution: Write Dockerfiles
from scratch
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Antipattern 3

Building Docker images with 
side effects

Solution: Move side effects to 
CI/CD server
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Antipattern 4

Confusing images used for 
deployment with development

Solution: Don’t ship development 
tools to production
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Antipattern 5

Building different images per 
environment

Solution: Build image only 
once and promote
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Antipattern 6

Building images in production 
servers

Solution: Use 3 docker
registries
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Antipattern 7

Promoting Git hashes between 
teams

Solution: Promote container 
images between teams
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Antipattern 8

Hardcoding secrets in 
containers

Solution: Build image once and 
fetch configuration
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Antipattern 9

Using Docker as poor man’s 
CI/CD

Solution: Use CI/CD as a CI/CD 
solution

Checkout Sonar Lint Build Unit tests S3 
upload
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Antipattern 10

Using Docker as dumb 
packaging method

Solution: Create dockerfiles that 
package/compile on their own
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The end

https://codefresh.io/containers/docker-anti-patterns/
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