
Docker anti-patterns

Make IT
October 2019

Kostis Kapelonis

1



Antipattern – common mistake

2



Things I love

Testing Automation

3



Current Work

Docker based CI/CD 
solution for Helm/ solution for Helm/ 
Kubernetes
deployments

4



Current Work

5



Current Work

6



Current Work

https://codefresh.io/blog/

https://codefresh.io/features/

7



Why

• Container usage is exploding
• Land rush for tools/solutions/companies
• Kubernetes/Nomad/Docker Swarm all use 

containerscontainers
• Containers used for CI/CD
• Reddit /devops and /docker suffer from wrong 

advice

8



Docker = Containers

9



Docker advice

Too many articles talk about 
Dockerfiles. Too few talk about Dockerfiles. Too few talk about 
Docker images

10



Dockerfile anti-patterns

• https://docs.docker.com/develop/develop-
images/dockerfile_best-practices/

• https://www.docker.com/blog/intro-guide-to-
dockerfile-best-practices/dockerfile-best-practices/

• Do not use `latest` in your Dockerfile or 
deployments

11



Antipattern 1 – VMs and containers

12



Docker advice

Docker images are NOT virtual 
machines.machines.

13



VM questions

14



VM questions

15



Trying to reuse VM knowledge

16



People abuse VM tools

• Configuration management is not the answer
• Ansible/Puppet/Chef/Salt are CM tools
• Most solutions tried to shoe-horn container 

supportsupport
• System administrators were baptized Service 

Reliability Engineers

17



Learn containers from scratch

18



Common issues

• Docker tags do not work like Git tags
• Docker has different security model than VMs
• New caching model for layers
• Containers need orchestration• Containers need orchestration
• Auto-scaling, monitoring, logging, errors need 

a different approach
• Transition from VMs to containers is harder

19



Common questions

• How do I update files in a container?
• How do I ssh to a container?
• How do I get logs outside of a container?
• How do I apply security fixes to a container?• How do I apply security fixes to a container?
• How do I run multiple programs to a container
• How do I backup/restore a container?

20



Answer

You don’t. Forget your You don’t. Forget your 
VM knowledge

21



Antipattern 2 – Opaque Dockerfiles

22



What does this dockerfile do?

23



You need access to Puppet server

24



What does this dockerfile do?

• Building the image requires access to Puppet
• Different puppet server -> different image
• Non-repeatable builds
• Docker image requires puppet knowledge• Docker image requires puppet knowledge
• Application version is undefined
• Team just used the existing VM puppet files 

(see antipattern 1)

25



How to fix this dockerfile

Docker images should be Docker images should be 
transparent and 
repeatable

26



What does this dockerfile do?

27



Transparent Docker images

• Anyone should be able to build the image
• Building multiple times results in the same 

image
• Application version is visible• Application version is visible
• Changing the version of application should be 

easy
• Other good practices apply (e.g. multi-stage 

builds)

28



Antipattern 3 – Side effects in Docker

29



Repeatable Docker images

Building an image should Building an image should 
have ZERO side effects

30



What does this dockerfile do?

31



This Dockerfile is not idempotent

• Copies source code (OK)
• Downloads Dependencies (OK)
• Runs Unit tests (OK)
• Publishes NPM module (NOT OK)• Publishes NPM module (NOT OK)
• Binds to port 8080 (OK)

32



Repeatable Docker images

Is it safe to build this Is it safe to build this 
dockerfile twice?

33



The golden rule for Dockerfiles

Dockerfiles are NOT 
glorified bash scripts

34



Inside a Dockerfile don’t:

• Perform Git commits or create Git tags
• Upload files or call POST requests
• Cleanup or tamper with Database Data
• Send notifications to external systems• Send notifications to external systems
• Perform destructive actions
• Tamper with shared network files

35



Inside a Dockerfile do:

• Clone source code
• Download dependencies
• Compile/package code
• Fetch extra resources (GET calls)• Fetch extra resources (GET calls)
• Process/minify local resources and assets
• Tamper only with local files

36



Learn how Docker caching works

Unsafe actions in Unsafe actions in 
Dockerfiles break the 
caching

37



What does this dockerfile do?

38



Tampering with the database

1. You run integration tests and they break
2. You fix your source code
3. Docker will NOT rerun the mysql commands
4. Your tests will now use old data4. Your tests will now use old data

39



No side effects in Dockerfiles

• You should be able to build N times
• Building an image should not affect anything 

external
• Each build must result in the same image• Each build must result in the same image
• Remove unsafe actions from Dockerfiles (and 

place them in CI/CD)
• Only idempotent actions in Dockerfiles

40



Antipattern 4 – Types of Images

41



Don’t confuse types of images

Each organization must Each organization must 
have at least two types 
of Docker images

42



Two types of images

• Deployment images
• Sent to production 

servers
• They contain the 

• Tooling images
• Used by developers, 

ops, CI/CD system
• Have source code, tools, • They contain the 

application code and 
NOTHING else

• Have source code, tools, 
compilers, frameworks

• Cloud tools, linters, 
testing facilities etc.

• Never deployed 
anywhere

43



Production images: lean and fast

44



Production images

• Small (use multi-stage builds)
• Only ship application code in the final state
• Minimal to avoid security issues
• No dev tools, no test tools (git, linters)• No dev tools, no test tools (git, linters)
• No curl, wget, nc, etc
• Battle hardened, security tested

45



CI/CD images: kitchen sink

46



CI/CD images: kitchen sink

• Used by developers and CI/CD system
• Size of image can be big 
• Contain pure source code, dev tools
• Test utilities, cloud utilities included• Test utilities, cloud utilities included
• Used to setup dev environment
• Have support role, NEVER deployed

47



Do not ship dev environments

48



Multi-stage builds

49



Single stage image

50



Single stage image

• This image is 700MB
• It is a full Debian/Ubuntu environment
• Contains Git, Mercurial, SSH client, 

subversion, curlsubversion, curl
• It has a full blown GO dev environment
• This is an attacker’s dream
• Very slow to deploy

51



Multi-stage builds

52



Multi-stage builds

• This image is 6 MB
• It contains just the executable
• Minimal attack vector(not even a shell)
• Harder to exploit

53

• Harder to exploit
• Very fast to deploy



Check your Docker images

30MB for Go app, 150MB 30MB for Go app, 150MB 
for Java, other 
languages in-between

54



Check your Docker images

Do not ship GIT, gcc, curl, test Do not ship GIT, gcc, curl, test 
frameworks etc. in 
production

55



Antipattern 5 – Different env images

56



Why immutable containers

• Containers (unlike VMs) are immutable
• Build once and promote to environments
• You deploy what you tested
• Multiple promotion stages• Multiple promotion stages
• Each release is a new build (brand new)
• Need help from CI/CD

57



Promote the same image

58



Golden rule for deployments

A Docker image is built A Docker image is built 
once for ALL 
environments

59



Different images per environment

60



Different images per environment

• No guarantee that what you tested is the 
same

• Developers abuse QA image to insert debug 
toolstools

• Configuration drift is possible (also a big 
problem with VMs)

61



Fix your CI/CD system

• Do not build multiple times the source code
• Promote image between pipelines
• Promote image between different registries
• All configuration should be external• All configuration should be external
• The same Docker image ID is used in the 

whole lifecycle

62



Antipattern 6 – Building in production

63



Very common anti-pattern

• Building Docker images in production servers
• Abuse GIT/Ansible as deployment tool
• Each server is responsible for its own image
• No central image repository• No central image repository
• People are trying to reuse VM knowledge (see 

anti-pattern 1)

64



Building in production servers

65



Building in production servers

• Git is not a deployment tool
• Inbound git access has security issues
• This is a VM technique (anti-pattern 1)
• Different image per server (anti-pattern 5)• Different image per server (anti-pattern 5)
• You don’t know what docker image is 

deployed

66



Central Docker storage

Learn/Use Docker Registries
67



Use Docker registries

68



Use Docker registries

• Central repository of past releases
• All servers run same image
• Rollback is trivial
• Secure outbound access + DMZ• Secure outbound access + DMZ
• Source code never leaves the premises

69



Use Multiple Docker registries

1. Dev Docker registry (auto-cleaned)
2. QA Registry

– Holds Release candidates
– Promoted from Dev– Promoted from Dev

3. Prod Registry
– Deployed in production
– Security scans
– Audit trail
– Promoted from QA

70



Use Docker registries

• Many open source solutions
• Many proprietary solutions
• Well defined API
• Looking to the future - OCI• Looking to the future - OCI
• Docker registries for Helm charts as well

71



Antipattern 7 – Using Git hashes

72



Before containers

73



Containers as deployment artifact

74



Containers in CI/CD

75



Corollary from anti-patterns 5 - 6

• Build Docker images once• Build Docker images once
• Promoted between Docker

registries

76



Docker images are the central entity

Talk about Docker tags instead Talk about Docker tags instead 
of Git hashes

77



Git hash as hand-off

78



Docker tag as hand-off

79



Don’t talk about Git hashes

• Everybody should talk about Docker tags
• Docker registry is the central place to pick 

releases for QA/Ops
• CI/CD pipelines should work with Docker• CI/CD pipelines should work with Docker

images
• Build image once and promote image in the 

software pipeline

80



Rolling back

81



Rolling back

82



Change your CI/CD pipelines

Git
hash

Git
hash

Git
hash

Git
hash

Git
hash

Docker
image

Git
hash

Docker
image

Docker
image

Docker
image

Docker
image

Docker
image

83



Antipattern 8 – Hardcoding secrets

84



Do not hardcode secrets and conf

• People still hardcode configuration (anti-
pattern 1)

• People still create different images per 
environment (5)environment (5)

85



Do not hardcode secrets and conf

86



Golden rule for Docker deployments

A Docker image should be A Docker image should be 
configuration agnostic

87



Golden rule for Docker deployments

A Docker image should fetch A Docker image should fetch 
configuration during runtime 
(and not buildtime)

88



Runtime configuration

89



Runtime configuration

https://12factor.net/config 90



Golden rule for deployments

A Docker image is built A Docker image is built 
once for ALL 
environments

91



Multiple solutions for conf/secrets
Config-maps

Lyft Confidant

92



If your Docker image…

• …has hardcoded IPs
• …contains passwords 

and secrets
• …mentions specific • …mentions specific 

URLs of other services
• …has tags like foo-dev 

or foo-qa or foo-staging

You are doing it wrong!
93



Antipattern 9 – Poor mans’ CI

94



“Shift your CI scripts to docker build“

95



96



Creating Dockerfiles that do too much

Dockerfiles are not Dockerfiles are not 
glorified bash scripts

97



Use CI/CD pipeline as intended

S3 Checkout Sonar Lint Build Unit tests S3 
upload

98



Don’t abuse Docker as CI/CD

Side effects are only allowed in Side effects are only allowed in 
the CI/CD pipeline

99



Antipattern 10 – Docker afterthought

100



Creating Dockerfiles that do too little

Don’t use docker as a simple Don’t use docker as a simple 
package format

101



What does this dockerfile do?

How was the jar created???
What is the app version???

102



Example taken from Spring Boot Guide

103



Creating Dockerfiles that do too little

This dockerfile expects a full This dockerfile expects a full 
Java environment

104



Before containers

105



Containers in CI/CD

106



Fixing the Dockerfile

Exercise 1- multistage
Exercise 2 – Layer caching

107



Change your CI/CD pipelines

Git
hash

Git
hash

Git
hash

Git
hash

Git
hash

Docker
image

Git
hash

Docker
image

Docker
image

Docker
image

Docker
image

Docker
image

108



One command for all

• docker build . -t my-tag (developer)
• docker build . -t my-tag (operator)
• docker build . -t my-tag (ci/cd server)
• docker build . -t my-tag (test engineer)• docker build . -t my-tag (test engineer)
• docker build . -t my-tag (release engineer)
• docker build . -t my-tag (security analyst)

109



Conclusion

10 Docker antipatterns for 10 Docker antipatterns for 
MANAGING docker images

110



Antipattern 1

Attempting to use VM 
practices with Containers

Solution: Understand what 
containers are

111



Antipattern 2

Creating Docker files that are 
not transparent

Solution: Write Dockerfiles
from scratch

112



Antipattern 3

Building Docker images with 
side effects

Solution: Move side effects to 
CI/CD server

113



Antipattern 4

Confusing images used for 
deployment with development

Solution: Don’t ship development 
tools to production

114



Antipattern 5

Building different images per 
environment

Solution: Build image only 
once and promote

115



Antipattern 6

Building images in production 
servers

Solution: Use 3 docker
registries

116



Antipattern 7

Promoting Git hashes between 
teams

Solution: Promote container 
images between teams

117



Antipattern 8

Hardcoding secrets in 
containers

Solution: Build image once and 
fetch configuration

118



Antipattern 9

Using Docker as poor man’s 
CI/CD

Solution: Use CI/CD as a CI/CD 
solution

Checkout Sonar Lint Build Unit tests S3 
upload

119



Antipattern 10

Using Docker as dumb 
packaging method

Solution: Create dockerfiles that 
package/compile on their own

120



The end

https://codefresh.io/containers/docker-anti-patterns/

121


