Docker anti-patterns

Make IT
October 2019
Kostis Kapelonis

Antipattern — common mistake

Things | love

—
—

Current Work
“’ Docker based CI/CD
solution for Helm/

codefresh Kubernetes
deployments

Current Work

PI pe' Ine N ame Documentation Support TRIGGER PIPELINE
Release a new update to prod. Must be apdafadsf asdsd....

COMPLETED STEPS START TIME DURATION TRIGGER R
" 12 VIEW YAML 1/8/2018 22:22 10m COMMIT on g Idan's Gitlab - codefresh-io/sf-secrets by O Idan Arbel b, DOWNLOADLOG
Pipelines
= [puse]
I + Initialization 2435 PHASE DEPENDENCY
BUILD = BUILD = UNIT =
Kubernetes
2.43s 2435
Helm Releases » GITCLONE L GITCLONE 1 GITCLONE
o « * Clonning main repository o + * Clonning main repository + * Clonning main repository
Docker Swarm
243s 243s
o 2 GITCLONE 0 . GITCLONE ¢ GITCLONE
s ° Clonning main repository » ° Clonning main repository : + ° Clonning main repository
Images
Repositories m
2.43s 2435
Helm Charts @ | < oo gl Saw
Clonning main repository Clonning main repository
2435 2435
Account Settings > GITCLONE GIT CLONE
. R Clonning main repository . % Clonning mainrepositary
User Settings

W)

codefresh

Current

W

HELM Releases

prod@GoogleCloud

demochat-helm-value-ref

(W Install complete

codefresh

A Helm chart for Kubernetes

demochat-master

Rellback to 8

A Helm chart for Kubernetes

wordpress

Install complete

demochat-prod

gd..‘ w Upgrade complete

CLUSTER
cluster-
1@Firstkubernetes

CLUSTER
cluster-
1@FirstKubernetes

CLUSTER
cluster-
1@FirstKubernetes

Web publishing platform for building blogs and websites.

https://github.com/bitnami/bitnami-docker-wordpress

CLUSTER
cluster-
1@FirstKubernetes

or

Help
REVISION MODIFIED
1 3 months ago
REVISION MODIFIED
10 2 months ago
REVISION MODIFIED
1 3 months ago
REVISION MODIFIED
9 2 months ago

ADD REPOSITORY

afew seconds ago

CHART —
s
demochat-0.1.0 ik

P RUNTEST X DELETE <> BADGE

CHART —
) oy
demochat-02.0 Chieskia

» RUNTEST X DELETE <> BADGE

CHART

wordpress-0.7.8 RERLOYED

P RUNTEST X [

CHART
demochat-0.2.0

codefresh

Current Work

cg; -+ Mmaven (\')

Docker Tutorial | June 20, 2018 COdefI’QSh

Using Docker from Maven and
Maven from Docker

https://codefresh.io/blog/

7
|
\

©) Kostis Kapelonis https://codefresh.io/features/

Why

Container usage is exploding
Land rush for tools/solutions/companies

Kubernetes/Nomad/Docker Swarm all use
containers

Containers used for CI/CD

Reddit /devops and /docker suffer from wrong
advice

Docker = Containers

e

oocker

Docker advice

Too many articles talk about
Dockerfiles. Too few talk about
Docker images

Dockerfile anti-patterns

* https://docs.docker.com/develop/develop-
images/dockerfile best-practices/

* https://www.docker.com/blog/intro-guide-to-

dockerfile-best-practices/

* Do not use latest in your Dockerfile or
deployments

11

Antipattern 1 — VMs and containers

12

Docker advice

Docker images are NOT virtual
machines.

VM questions

How to handle security updates within Docker containers?

Asked 5 years, 3 months ago Active 5 months ago Viewed 31k times

1

When deploying applications onto servers, there is typically a separation between what the application
bundles with itself and what it expects from the platform (operating system and installed packages) to
provide. One point of this is that the platform can be updated independently of the application. This is

useful for example when security updates need to be applied urgently to packages provided by the
platform without rebuilding the entire application.

Traditionally security updates have been applied simply by executing a package manager command to
install updated versions of packages on the operating system (for example "yum update” on RHEL). But
with the advent of container technology such as Docker where container images essentially bundle both
the application and the platform, what is the canonical way of keeping a system with containers up to
date? Both the host and containers have their own, independent, sets of packages that need updating
and updating on the host will not update any packages inside the containers. With the release of RHEL 7
where Docker containers are especially featured, it would be interesting to hear what Redhat's
recommended way to handle security updates of containers is.

14

VM questions

Can | run multiple programs in a Docker container?

Asked 5 years, 11 months ago Active 2 months ago Viewed 83k times

T3

I'm trying to wrap my head around Docker from the point of deploying an application which is intended to
run on the users on desktop. My application is simply a flask web application and mongo database.
MNormally | would install both in a VM and, forward a host port to the guest web app. I'd like to give Docker
a try but I'm not sure how I'm meant to use more than one program. The documentations says there can
only be only ENTRYPOINT so how can | have Mongo and my flask application. Or do they need to be in
separate contains, in which case how do they talk to each other and how does this make distributing the
app easy?

docker

15

Trying to reuse VM knowledge

Container practices
‘ Virtual machine practices |

| Bare metal practices |
® Don't

4

Moving to containers

People abuse VM tools

Configuration management is not the answer
Ansible/Puppet/Chef/Salt are CM tools

Most solutions tried to shoe-horn container
support

System administrators were baptized Service
Reliability Engineers

Learn containers from scratch

Moving to containers (breakthrough)

Virtual machine practices

Bare metal practices

Container practices

Do

18

Common issues

Docker tags do not work like Git tags

Docker has different security model than VMs
New caching model for layers

Containers need orchestration

Auto-scaling, monitoring, logging, errors need
a different approach

Transition from VMs to containers is harder

Common questions

ow do | update files in a container?

ow do | ssh to a container?

ow do | get logs outside of a container?

ow do | apply security fixes to a container?
ow do | run multiple programs to a container
ow do | backup/restore a container?

Answer

You don’t. Forget your
VM knowledge

Antipattern 2 — Opaque Dockerfiles

22

What does this dockerfile do?

FROM alpine:3.4

RUN apk add --no-cache \
ca-certificates \
pciutils \
ruby \
ruby-irb \
ruby-rdoc \

&& \

echo http://dl-4.alpinelinux.org/alpine/edge/community/ >> /etc/apk/repositories && \

apk add --no-cache shadow && \
gem install puppet:"5.5.1" facter:"2.5.1" && \
/usr/bin/puppet module install puppetlabs-apk

Install Java application
RUN /usr/bin/puppet agent --onetime --no-daemonize

ENTRYPOINT ["java","-jar","/app/spring-boot-application.jar"]

23

You need access to Puppet server
QA Puppet

Puppet apply
Dev <

Prod Puppet

o P t |
N\

/

What does this dockerfile do?

* Building the image requires access to Puppet
* Different puppet server -> different image

* Non-repeatable builds

* Docker image requires puppet knowledge

* Application version is undefined

 Team just used the existing VM puppet files

ppppppppppp

(see antipattern 1) % o Pt

Prod Puppet

How to fix this dockerfile

Docker images should be
transparent and
repeatable

WO 00 ~1 O B WK

-
B ®

What does this dockerfile do?

FROM openjdk:8-jre-alpine
ENV MY_APP_VERSION="3.2"

RUN apk add --no-cache \
ca-certificates

WORKDIR /app

ADD http://artifactory.mycompany.com/releases/${MY_APP_VERSION}/spring-boot-application.jar .

ENTRYPOINT ["java","-jar","/app/spring-boot-application.jar"]

27

Transparent Docker images

Anyone should be able to build the image

Building multiple times results in the same
Image

Application version is visible

Changing the version of application should be
easy

Other good practices apply (e.g. multi-stage
builds)

Antipattern 3 — Side effects in Docker

29

Repeatable Docker images

Building an image should
have ZERO side effects

W 00 ~1 v 1 B ow M

e N I = S
N oOnm R W N R ®

What does this dockerfile do?

FROM node:9
WORKDIR /app

COPY package.json ./package.json

COPY package-lock.json ./package-lock.json
RUN npm install

COPY .

RUN npm test
ARG npm_token

RUN echo "//registry.npmjs.org/: authToken=${npm_token}" > .npmrc
RUN npm publish --access public

EXPOSE 8086
CMD [[| "npm", "start" ﬂ
31

This Dockerfile is not idempotent

Copies source code (OK)
Downloads Dependencies (OK)
Runs Unit tests (OK)

Publishes NPM module (NOT OK)
Binds to port 8080 (OK)

32

Repeatable Docker images

Is it safe to build this
dockerfile twice?

The golden rule for Dockerfiles

Automgie Your Unix Tasks

Classic

Scripting

O,REILLYD Arnold Robbins & Nelson H. F. Beebe

Dockerfiles are NOT
glorified bash scripts

34

Inside a Dockerfile don’t:

Perform Git commits or create Git tags
Upload files or call POST requests
Cleanup or tamper with Database Data
Send notifications to external systems
Perform destructive actions

Tamper with shared network files

Inside a Dockerfile do:

Clone source code

Download dependencies
Compile/package code

Fetch extra resources (GET calls)
Process/minify local resources and assets
Tamper only with local files

36

Learn how Docker caching works

Unsafe actions in
Dockerfiles break the
caching

O 00 <1 ov 1 B w M

O e e e e e
NGOV R W NRE®

What does this dockerfile do?

FROM node:1@.15-jessie

RUN apt-get update && apt-get install -y mysqgl-client && rm -rf /var/lib/apt

RUN mysgl -u root --passwords= < test/prepare-db-for-tests.sql

WORKDIR /app
COPY package.json ./package.json
COPY package-lock.json ./package-lock.json

RUN npm install
COPY .

RUN npm integration-test
EXPOSE 80806

CMD B “"npm"”, "start” ﬂ

38

~ W N -

Tampering with the database

. You run integration tests and they break
. You fix your source code
. Docker will NOT rerun the mysql commands

. Your tests will now use old data

No side effects in Dockerfiles

You should be able to build N times

Building an image should not affect anything
external

Each build must result in the same image

Remove unsafe actions from Dockerfiles (and
place them in CI/CD)

Only idempotent actions in Dockerfiles

Antipattern 4 — Types of Images

41

Don’t confuse types of images

Each organization must
have at |least two types
of Docker images

Two types of images

* Deployment images
e Sent to production
servers

* They contain the
application code and
NOTHING else

Tooling images

Used by developers,
ops, CI/CD system

Have source code, tools,
compilers, frameworks

Cloud tools, linters,
testing facilities etc.

Never deployed
anywhere

43

Production images: lean and fast

44

Production images

Small (use multi-stage builds)
Only ship application code in the final state
Minimal to avoid security issues

No dev tools, no test tools (git, linters)

No curl, wget, nc, etc

Battle hardened, security tested

Cl/CD images: kitchen sink

46

Cl/CD images: kitchen sink

Used by developers and CI/CD system
Size of image can be big
Contain pure source code, dev tools

‘est utilities, cloud utilities included
Used to setup dev environment

Have support role, NEVER deployed

Do not ship dev environments

Dev Prod server
environment

Deploy
' o

Multi-stage builds

22f.
" docker‘ leQ Why Docker? Products Solutions Customers Resources

All Products Community Insights Company

‘ Multi-Stage Builds

By Sophia Parafina Yyin®G f @&
. Automated builds. docker cloud, Multi-stage Builds

This is part of a series of articles describing how the AtSea Shop application was built using enterprise develo
Docker. In the previous post, | introduced the AtSea application and how | developed a REST application with
Docker. Multi-stage builds, a Docker feature introduced in Docker 17.06 CE, let you orchestrate a complex buil
Dockerfile. Before multi-stage build, Docker users would use a script to compile the applications on the host n
Dockerfiles to build the images. The AtSea application is the perfect use case for a multi-stage build because:

49

o bW N

Single stage image

FROM golang:1.7.1

COPY src /go/src

RUN go build -o bin/sample src/sample/trivial-web-server.go
EXPOSE 80886

CMD ["/go/bin/sample"]

50

Single stage image

This image is 700MB
It is a full Debian/Ubuntu environment

Contains Git, Mercurial, SSH client,
subversion, curl

It has a full blown GO dev environment
This is an attacker’s dream
Very slow to deploy

51

W 00~ v b1 B WM

=
©

Multi-stage builds

FROM golang:1.7.1 AS build-env

COPY src /go/src
RUN CGO_ENABLED=@ GO0S=1linux go build -o bin/sample src/sample/trivial-web-server.go

FROM scratch
COPY --from=build-env /go/bin/sample /app/sample

EXPOSE 8080
CMD ["/app/sample"]

52

Multi-stage builds

This image is 6 MB

It contains just the executable

Minimal attack vector(not even a shell)
Harder to exploit

Very fast to deploy

53

Check your Docker images

30MB for Go app, 150MB
for Java, other
languages in-between

54

Check your Docker images

Do not ship GIT, gcc, curl, test
frameworks etc. in
production

55

Antipattern 5 — Different env images

56

Why immutable containers

Containers (unlike VMs) are immutable
Build once and promote to environments
You deploy what you tested

Multiple promotion stages

Each release is a new build (brand new)
Need help from CI/CD

Promote the same image

58

Golden rule for deployments

A Docker image is built
once for ALL
environments

Stage

Different images per environment

Docker image
Id = 23f45c

Build

60

Different images per environment

* No guarantee that what you tested is the
same

* Developers abuse QA image to insert debug
tools

* Configuration drift is possible (also a big

problem with VMs) .
oA 7T ‘ _red
® Don't

Fix your CI/CD system

Do not build multiple times the source code

Promote image between pipelines

Promote image between different registries
All configuration should be external

The same Docker image ID is used in the
whole lifecycle

Antipattern 6 — Building in production

63

Very common anti-pattern

Building Docker images in production servers
Abuse GIT/Ansible as deployment tool

Each server is responsible for its own image
No central image repository

People are trying to reuse VM knowledge (see

anti-pattern 1)

64

Building in production servers

Prod Server 1

® bont ~ ProdServer2
. Git pull

Prod Server 3
Git pull

65

Building in production servers

Git is not a deployment tool

Inbound git access has security issues

This is a VM technique (anti-pattern 1)

Different image per server (anti-pattern 5)

You don’t know what docker image is

deployed

SSSSSS

iiiii

Build | Bocker | !

imi

uuuuuuuuuuuuuuuuu
age | !

uuuuuuuuuuuu

Central Docker storage

Learn/Use Docker Registries

Use Docker registries

Prod Server 1

68

Use Docker registries

Central repository of past releases

All servers run same image

Rollback is trivial

Secure outbound access + DMZ

Source code never leaves the premises

Prod S 1
i- --------------
1
: Docker
s
dploy/: _______________
Prod S 2
= T Docker
imag

Use Multiple Docker registries

1. Dev Docker registry (auto-cleaned)
2. QA Registry

— Holds Release candidates
— Promoted from Dev

3. Prod Registry
— Deployed in production
— Security scans
— Audit trail
— Promoted from QA

70

Use Docker registries

Many open source solutions

Many proprietary solutions

Well defined API

Looking to the future - OCI

Docker registries for Helm charts as well

Antipattern 7 — Using Git hashes

72

Before containers

Dev; > Maven > K \

Dev_i_,::>|IE|_|—_|_| => %
ST TR

python

Containers as deployment artifact

&>
Dev.] = Maven > e
Dev_i_ |:>|IE|E > * > %

docker

g plp o> W

docker

Containers in CI/CD

O, & o &
Dev E> docker
;@E> docker \ @
Dev _i => o => e > %

docker docker
- _ii@ N * = * " OPS

docker docker

Corollary from anti-patterns 5 - 6

* Build Docker images once

* Promoted between Docker
registries

Docker images are the central entity

Talk about Docker tags instead
of Git hashes

Git hash as hand-off

This is a Java app. I
Alease package and depluy) ® DO n t

(Java Source Code)

This is a Node app.
Dev Please package and deploy

(Node Source Code) O ps

78

Docker tag as hand-off

This is a container
Please deploy DO

This is a container
Please deploy

79

Don’t talk about Git hashes

Everybody should talk about Docker tags

Docker registry is the central place to pick
releases for QA/Ops

Cl/CD pipelines should work with Docker
Images

Build image once and promote image in the
software pipeline

DEV

Rolling back

We need to rollback!]

=

How?

-

| will run git reset/revert and then we will wait
30 minutes for the whole pipeline to run again
compiling all code from scratch

.

o

OPS

81

DEV

Rolling back

/ We need to rollback!]

<

How?

Just deploy the previous Docker
tag. It should take 30 seconds

OPS

82

Change your CI/CD pipelines

Git Git Git Git Git Docker
hash hash hash hash hash

Git Docker | Docker | Docker @ Docker
hash image image image image

Docker
image

83

Antipattern 8 — Hardcoding secrets

84

Do not hardcode secrets and conf

* People still hardcode configuration (anti-
pattern 1)

* People still create different images per
environment (5)

Stage
1| Docker image |1
1
1
1
QA ---------- Prod
_________ [em———————
Build 1
1
1
1 1
i ; 1| Docker image 1
DDDDDDDDD Build Sotiree Build 1
Id = 65ds3f _— e 1] 1d = 23145¢
1
1
1

Do not hardcode secrets and conf

Staging

Configuration for

Source
Code

| "" ®D0n't

: Build B
Configuration for Docker image

environment B Id = 23f45¢c

Production

86

Golden rule for Docker deployments

A Docker image should be
configuration agnostic

Golden rule for Docker deployments

A Docker image should fetch
configuration during runtime
(and not buildtime)

Runtime configuration

Staging ,
i

get : i

conf ! i

- i I Configuration for i

| environment A 1

I

Common : |

build : :

] I

get | :

! [

<o : Configuration f i

e onfiguration for I

e E environment B !

i i

! [

- 1

' [

! [
]

Production &+
@ D 0 Configuration
Server

89

Runtime configuration

THE TWELVE-FACTOR APP

II1. Config

@re config in the environment

An app’s config is everything that is likely to vary between deploys (staging, production, developer environments, etc). This

includes:

= Resource handles to the database, Memcached, and other backing services
« Credentials to external services such as Amazon S3 or Twitter
s Per-deploy values such as the canonical hostname for the deploy

Apps sometimes store config as constants in the code. This is a violation of twelve-factor, which requires strict separation of
config from code. Config varies substantially across deploys, code does not.

A litmus test for whether an app has all config correctly factored out of the code is whether the codebase could be made open
source at any moment, without compromising any credentials.

Note that this definition of “config” does not include internal application config, such as | config/routes.rb | in Rails, or

https://12factor.net/config

Golden rule for deployments

A Docker image is built
once for ALL
environments

Multiple solutions for conf/secrets

G:

HashiCorp

Consul

Config-maps

kubernetes

1 : bD APACHE CERBERUS
Z00 Keeperm i ; SECURE PROPERTY STORE FOR CLOUD APPLICATIONS

Lyft Confidant

92

If your Docker image...

...has hardcoded IPs

...contains passwords
and secrets

...mentions specific
URLs of other services

...has tags like foo-dev
or foo-ga or foo-staging

You are doing it wrong!

93

Antipattern 9 — Poor mans’ Cl

94

“Shift your ClI scripts to docker build“

1 # Run Sonar analysis

2 FROM newtmitch/sonar-scanner AS sonar

3 COPY src src

4 RUN sonar-scanner

5 # Build application

6 FROM node:11 AS build

74 WORKDIR /usr/src/app

8 COPY .

9 RUN yarn install \

1e yarn run lint \

11 yarn run build \

12 yarn run generate-docs

13 LABEL stage=build

14 # Run unit test

15 FROM build AS unit-tests

16 RUN yarn run unit-tests

17 LABEL stage=unit-tests|

18 # Push docs to S3

19 FROM containerlabs/aws-sdk AS push-docs
20 ARG push-docs=false

21 COPY --from=build docs docs

22 RUN [["$push-docs" == true]] && aws s3 cp -r docs s3://my-docs-bucket/
23 # Build final app

24 FROM node:11-slim

25 EXPOSE 8086

26 WORKDIR /usr/src/app

27 COPY --from=build /usr/src/app/node_modules node_modules
28 COPY --from=build /usr/src/app/dist dist
29 USER node

38 CMD ["node", "./dist/server/index.js"]

95

W o0 ~ vl B w MR

W N NN NMNNNNNNNRRRRRBRRBRRERRRER
@ W oo OB WN PR O®WOHNOOW PR WNREO®

Run Sonar analysis
FROM newtmitch/sonar-scanner AS sonar
COPY src src

RUN sonar-scanner K Depend on Sonal’

Build application i
FROM node:11 AS build Anti-pattern 1
WORKDIR /usr/src/app
COPY .

RUN yarn install \

yarn run lint \

yarn run build \

yarn run generate-docs
LABEL stage=build

Run unit test

FROM build AS unit-tests

RUN yarn run unit-tests Upload to S3/Side effect

LABEL stage=unit-tests| Anti-pattern 3
Push docs to S3

FROM containerlabs/aws-sdk AS push-docs
ARG push-docs=false

COPY --from=build docs docs V7

RUN [["$push-docs" == true]] && aws s3 cp -r docs s3://my-docs-bucket/
Build final app

FROM node:11-slim

EXPOSE 8086

WORKDIR /usr/src/app

COPY --from=build /usr/src/app/node_modules node_modules

COPY --from=build /usr/src/app/dist dist BOth Dev/Deployment
USER node
CMD ["node", "./dist/server/index.js"] I/Anti-pattern 4

96

Creating Dockerfiles that do too much

Dockerfiles are not
glorified bash scripts

Use CI/CD pipeline as intended

Checkout Sonar Lint Unit tests =2
upload

Don’t abuse Docker as CI/CD

Side effects are only allowed in
the CI/CD pipeline

Antipattern 10 — Docker afterthought

100

Creating Dockerfiles that do too little

Don’t use docker as a simple
package format

ni B w MR

What does this dockerfile do?

FROM openjdk:8-jdk-alpine

VOLUME /tmp

ARG JAR_FILE

COPY ${JAR_FILE} app.jar

ENTRYPOINT [”java","-Djava.security.egd=+ile:fdevf.furandam”,”-jar",“fapp.jar"ﬂ

How was the jar created???
What is the app version???

Example taken from Spring Boot Guide

& | https://spring.iofguides/gs/spring-boot-docker/

@ Spnng PROJECTS | GUIDES

GETTING STARTED

Spring Boot with Docker

This guide walks you through the process of building a Docker image for running a Spring Boot
application.

What you'll build

Docker is a Linux container management toolkit with a "social" aspect, allowing users to
publish container images and consume those published by others. A Docker image is a recipe
for running a containerized process, and in this guide we will build one for a simple Spring boot
application.

Creating Dockerfiles that do too little

This dockerfile expects a full
Java environment

Before containers

Dev; > Maven > K \

Dev_i_,::>|IE|_|—_|_| => %
ST TR

python

Containers in CI/CD

O, & o &
Dev E> docker
;@E> docker \ @
Dev _i => o => e > %

docker docker
- _ii@ N * = * " OPS

docker docker

N o WM R

Fixing the Dockerfile

FROM openjdk:8-jdk-alpine

COPY pom.xml /tmp/

COPY src /tmp/src/

WORKDIR /tmp/

RUN ./gradlew build

COPY /tmp/build/app.war /app.jar

ENTRYPOINT [”java","-Djava.security.egd:file:fdevX.fuPandom“,”-jar",“fapp.jar"ﬂ

Exercise 1- multistage
Exercise 2 — Layer caching

Change your CI/CD pipelines

Git Git Git Git Git Docker
hash hash hash hash hash

Git Docker | Docker | Docker @ Docker
hash image image image image

Docker
image

108

O O O o o o

OC
OC
OC
OC
OC
OC

Ker
Ker
Ker
Ker

Ker

Ker

One command for all

Oui
Oui
Oui
Oui

OUl

OUl

O O O o o o

. -t my-tag (developer)

. -t my-tag (operator)

. -t my-tag (ci/cd server)

. -t my-tag (test engineer)

. -t my-tag (release engineer)
. -t my-tag (security analyst)

Conclusion

10 Docker antipatterns for
MANAGING docker images

Antipattern 1

Attempting to use VM
practices with Containers

Solution: Understand what
containers are

Antipattern 2

Creating Docker files that are
not transparent

Solution: Write Dockerfiles
from scratch

QA Puppet
Puppet apply
Sy B

Prod Puppet

Puppet apply

112

Antipattern 3

Building Docker images with
side effects

Solution: Move side effects to
CI/CD server

113

Antipattern 4

Confusing images used for
deployment with development

Solution: Don’t ship development
tools to production

Antipattern 5

Building different images per
environment

Solution: Build image only
once and promote

""""""""""

115

Antipattern 6

Building images in production
servers

Solution: Use 3 docker

registries ,

Antipattern 7/

Promoting Git hashes between
teams

Solution: Promote container
images between teams

117

Antipattern 8

Hardcoding secrets in
containers

Solution: Build image once and
fetch configuration

118

Antipattern 9

Using Docker as poor man’s
Cl/CD

Solution: Use CI/CD as a CI/CD
solution
]

Antipattern 10

Using Docker as dumb
packaging method

Solution: Create dockerfiles that
package/compile on their own

dddddddddddd

The end

(W)

codefresh

‘* — DEINT —

https://codefresh.io/containers/docker-anti-patterns/

121

