
 Enterprise versus Open Source Development

Policy

Kostis Kapelonis

Athens Greece, December 2013

13/12/2013 2

Question

What is the best Methodology

 for developing software

Applications?

13/12/2013 3

Question

What is the best Methodology

 for developing software

Applications?

most appropriate

13/12/2013 4

Enterprise Software

13/12/2013 5

Open Source general purpose software

13/12/2013 6

Embedded software

13/12/2013 7

Medical Software

13/12/2013 8

Military Software

13/12/2013 9

Nuclear Reactor Software

13/12/2013 10

Enterprise versus Open Source

Roles and privilages

The Team

Open source roles (privilages)

 Client is everybody

 Developer could be anybody

13/12/2013 11

Open source roles (involvement)

 Different level of involvement

 Author, Committer, Lieutenant, Contributor, Dictator

13/12/2013 12

Sends

 a patch

Fix issues

New features

Regular Contributor

Full time

13/12/2013 13

Enterprise Team

Unified Team

13/12/2013 14

Enterprise versus Open Source

Who approves what

Features

Open source stakeholders

 There is no “hard” timetable

 There is no “hard” set of features

13/12/2013 15

“Client”

“Developer”

Features

Features

13/12/2013 16

Open source forks

Feature wars

MySQL vs MariaDB

Emacs vs XEmacs

Debian vs Ubuntu

WebKit vs KHtml

XFree vs X.org

LibreOffice vs OpenOffice

Xwiki vs FossWiki

Enterprise stakeholders

 Stakeholder is the client. Ultimate power on features

 Client proposes features, clients approves features (same entity)

13/12/2013 17

Client

Developer

Features

13/12/2013 18

Enterprise versus Open Source

Choosing The base line

Changesets

Enterprise stakeholders

 Opensource loves the latest and greatest version (constant change)

 Enterprise loves backwards (and forwards) compatibility

13/12/2013 19

“Please verify on

latest version”

Regression

Testing

A Patch comes

in for an older version

13/12/2013 20

Enterprise versus Open Source

Different development

mindset

Other stuff

Other differences

Release early, release often

 It is done when it is done

Show me the code

 If it compiles, ship it

Users are lusers

Cathedral versus Bazaar

13/12/2013 21

13/12/2013 22

Enterprise versus Open Source

Trust on people

Biggest difference

Enterprise stakeholders

 Opensource must deal with the crowd (also malicious commits)

 Enterprise has controlled teams

13/12/2013 23

Unknown

Handpicked

Open Source Enterprise

13/12/2013 24

Enterprise versus Open Source

Trust no one (until they

get in)

Border Control

13/12/2013 25

Enterprise versus Open Source

Either you are trusted or not

13/12/2013 26

Enterprise versus Open Source

Safe area

Unsafe area

Pull request

Pull request

Commit access The internet

13/12/2013 27

Enterprise versus Open Source

One big barrier (In or out)

13/12/2013 28

Enterprise versus Open Source

Layers of trust of code

(not people)

A different approach

13/12/2013 29

Enterprise versus Open Source

The airport approach

13/12/2013 30

Enterprise versus Open Source

Gate Scanner Card Check-in

Code quality certainty

 Different level of code trust

 Code starts as unsafe and reaches production status

13/12/2013 31

Commit

Unit test

Integration Test

Manual test

Production

13/12/2013 32

Enterprise versus Open Source

Tools and support

In action

Branch model

13/12/2013 33

A successful

Git model

Layers of trust

13/12/2013 34

Development

Staging

Production

Manual (PM)

Semi- Automated (Testers)

Fully automated (everybody)

All commits go on

dev. Should

compile.

Test environments

use staging.

Tags come from

Production

Build jobs

 Developer build (almost every commit) – unit tests

 Integration tests (every 30 minutes)

 Sonar build (once a day)

 Promotion job (for testers)

 Staging environments (multiple)

 Release jobs

 Completely automated for day usage

13/12/2013 35

Build server

Developer responsibilities

 Commit on “dev” branch. Should run unit tests first locally

 Pull/Merge as needed freely (but only on dev branch)

 Multiple developers can work on same feature branch

 Monitor build status and fix broken builds

 All branches are remote (no local code)

 “Code that is not committed does not exist”

 Code review (before merging with “dev”)

 Commit messages have JIRA number

 Feature branches can be long or short

 For long lived – pull from “dev” daily

13/12/2013 36

Developer

QA responsibilities

 Runs tests on “Frozen” staging

 Promote a build from dev to staging (build job)

 Approve staging to PM (so that it can be released)

 During releases there is no promotion (hot fixes go on staging)

 Regression testing with maintenance branch

13/12/2013 37

Tester

PM responsibilities

 Ranks features

 Approves features (by the client)

 Approves late release stages

 Approves Tags and releases from production branch

13/12/2013 38

Project

Manager

Code review of (merged) feature

13/12/2013 39

JIRA - GIT

13/12/2013 40

13/12/2013 41

Bad commits

Oops – bad commit

Crap

13/12/2013 42

Bad commits

Git reset to previous commit

Back to

Normal

13/12/2013 43

Enterprise versus Open Source

Comparison

Simplicity in day to day operations

13/12/2013 44

Pull, push,

merge,

commit,

squash,

rebase

Open Source Enterprise

Pull, push,

merge,

commit

Simplicity in Build server setup

13/12/2013 45

Custom

scripts, new

jobs for pull

requests

Open Source Enterprise

Usage out

of the box

Simplicity in Build server load

13/12/2013 46

Jobs O (n)

(n = open PR)

Builds O(n2)

(n = commits)

Open Source Enterprise

Jobs O (1)

Builds O(n)

(n= commits

to dev)

How branches are treated

13/12/2013 47

1 Branch = 1

feature =

1contributor = 1

pull request

Open Source Enterprise

Only final result

matters (all

features

integrated)

Stability of workspace

13/12/2013 48

Your branch

may have

been rebased.

Checkout

again!

Open Source Enterprise

You can

work on any

branch

Dude, wtf?

Co-operation among developers

13/12/2013 49

External

regular

contributors

difficult

(unless

isolated work)

Open Source Enterprise

Multiple

external

developers

on same

branch

13/12/2013 50

Enterprise versus Open Source

Use the open source approach

for open source software

Conclusion

Use the Enterprise approach

for Enterprise software

13/12/2013 51

The future

Where we want to go

13/12/2013 52

The future

Software Pipelines

Thank you

13/12/2013 53

13/12/2013 54

Enterprise versus Open Source

Backup Slides

13/12/2013 55

Enterprise versus Open Source

Valid commit

Invalid commit

Build (success)

Build(fail)

Feature finished (ok)

Feature finished (not ok)

“fix build” commit

Merging 4 open pull requests

13/12/2013 56

Open Source (4 PRs) Enterprise (4 PRs)

Time

16 Builds (!!!) 4 Builds

13/12/2013 57

Merging 4 open pull requests

If 6 open pull requests = 36

Builds???

4PRs =16 builds

Another scenario

 2 Regular committers on the same

company

 1 external contributor on different country

 3 open pull requests (1 for each)

 3 unrelated features that share code

 Scenario = the first committer changes

the method signature of a module used

by the other two.

13/12/2013 58

Merging 3 open pull requests with errors

13/12/2013 59

Open Source Enterprise

Time

9 Builds, 2 fixes 4 Builds, 1 fix

