

Software Quality Reloaded

Kapelonis Kostis
(kkapelon@gmail.com)

JHUG November 2012

Second part of Quality Trilogy

Quality 2 –
This
presentation

Software Quality Definition (mine)

Source Java code

Magic happens here

Metrics (e.g LOC, unit coverage)

Enterprise Projects

High level (OOP)
Package quality
General architecture
Component interconnections

Software Quality 1/3

Enterprise Projects

●High level (OOP)
Class quality
Focus on a file
RFC, DIT, CC, LCOM, etc.

Software Quality 2/3

Enterprise Projects

Low level (Java)
Code quality
Java issues
Findbugs, PMD, e.t.c
Sonar

Software Quality 3/3

Enterprise Projects

Enterprise Projects

●Lot's of code (e.g. 150K LOC)
● No single developer knows all parts
● Sometimes the team does not include original
authors
● Often this is just for maintenance

Enterprise Projects

Enterprise Projects

● Nesting level
● Cyclomatic complexity
● Coverage
● Comments (Javadoc)
● Duplicate code

Basics (Warm up)

Enterprise Projects

● Avoid big classes and big methods
● A method should be a screen
● A class should be no more than 800 lines

Lines of code

Enterprise Projects

● I suggest no more than 3 blocks
● More than 4 needs refactoring
● I have seen 12 in a project

Nesting level

Enterprise Projects

● Well known metric
● There is no “correct” value
● I suggest 80% for back-end code
and 60% for GUI stuff

Unit test coverage

Enterprise Projects

● Public methods should be commented
● Private are optional
● Percent of public methods
● Ideally should be 100%

Api documentation

Enterprise Projects

● Number of code
flows
● Equals Number of
unit tests needed for
100% coverage
● Limits per method
or per class

Cyclomatic complexity

Enterprise Projects

● Dry metric
● 0% is difficult
● less than 5% is realistic

Duplicated code

Chidamber and Kemerer Java
Metrics

● CKJM Metrics (1996 paper)
● Search it as PDF
● WMC, DIT, NOC, CBO, RFC, CA,
NPM

WMC

● Weighted methods per Class
● Sum of CC for each method
● Limits should be set (e.g. less than 30)

DIT

● Depth of inheritance tree
● I suggest no more than 3 for application and
no more than 5 for framework

NOC

● Number of children
● DIT = depth, NOC = breadth
● High NOC on leafs, low on root

CBO

● Coupling between objects
● Number of classes used by this class
●High CBO = high complexity

RFC

● Response for a class
● Number of local methods + number
of remote methods (recursive)
●High RFC = high complexity

Enterprise Projects

● LCOM4
● My Favourite Metric!
● Can be used in several
cases

Hard Core

Enterprise ProjectsLCOM

●LCOM = Lack of Cohesion of Methods
●There are LCOM1, LCOM2, LCOM3, LCOM4
● We deal with LCOM4 (also used by Sonar)

Enterprise Projects

● LCOM4 = number of disjointed methods
● Methods are connected if the call each other or
access the same field
● LCOM4 should be 1 on a well designed class

LCOM definition

LCOM IS

Enterprise Projects

● LCOM4 = number of classes that this class should
break to
● If LCOM4 > 1 something smells here

What LCOM means

Enterprise ProjectsWhat LCOM detects

●God objects
●No Single Responsibility Principle
●Wrong abstractions
●Delegates/Factories/Service locators
●Wrong proxies/Facades

Questions/Answers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

