
Quality Metrics: GTE, CAP and CKJMQuality Metrics: GTE, CAP and CKJM

Kostis Kapelonis
Athens Greece, March 2010

Menu

� More Quality metrics:
� Google Testability Explorer (Starter)
� Code Analysis Plugin (Main Course)
� CKJM metrics (Dessert)

12/03/2010 2

Starter

12/03/2010 3

Google Testability Explorer

� Google Testability Explorer shows how “Testable” code you write
� Homepage is at http://code.google.com/p/testability-explorer/
� Includes reports for known projects (hibernate, ant, spring, maven)
� It is a Pre-Alpha release ! (Some things do not work at all)
� It is essentially “Propaganda” for Google Guice

12/03/2010 4

GTE: How does it work

� GTE scans all your classes
� It assigns a score to each class.
� The lower the number the “better”
� A High score means that this class needs refactoring
� Score is “testability cost” or “testability difficulty”
� How do you gain score

– Non-Mockable-Total Cyclomatic Complexity– Non-Mockable-Total Cyclomatic Complexity
– Global state, Static methods, Singletons
– Constructors that do too much (and include the new keyword)
– Calling methods on collaborators

12/03/2010 5

GTE Metrics (1/4)

� Cyclomatic complexity is already calculated by other tools
� GTE finds it recursively (This is the “total”)
� GTE excludes complexity that can be injected(This is “non-

mockable”)

public long calculateTax(Salary sal)
{

This is excluded

12/03/2010 6

{
long total = sal.findSalary();
total = total - GlobalTaxObject.findTax(total);
if(total > 2000)

total = 2000;
else

return total;
}

This is included!

Total is 2 + CC of findTax()

GTE Metrics (2/4)

� All global state is bad!
� Singleton is an anti-pattern!

public long calculateTax()
{

long total = Salary.findSalary();
total = total - GlobalTaxObject.findTax(total);
return total;

Bad

public long calculateTax(Salary sal,Tax tax)
{

long total = sal.findSalary();
total = tax.applyTax(total);
return total;

}
12/03/2010 7

return total;
}

Good

GTE Metrics (3/4)

� Minimal constructors (fast and simple)!
� No object initialization!

public TaxCalculator()
{

Account account = new BankAcount()
account.connect();

}

Bad

public TaxCalculator(Account account)
{

this.account = account;
}

12/03/2010 8

}

Good

GTE Metrics (4/4)

� Do not use an object in order to get something else
� Inject “else” directly

public void calculate(Account account)
{

List<Salary> salaries = account.getSalaries(2007);
calculateTax(salaries);

}

Bad

public void calculate(List<Salary>) salaries)
{

calculateTax(salaries);
}

12/03/2010 9

}

Good

GTE Usage

� Can run from command line
� Can run via Ant task
� Can run via Maven
� In the last case it can be integrated into mvn:site

12/03/2010 10

Main Course

12/03/2010 11

Code analysis plugin

12/03/2010 12

CAP Description

� Eclipse Plugin (http://cap.xore.de/)
� Essentially a GUI on JDepend
� If you understand JDepend, CAP will be trivial to use
� Metrics used are covered in “OO Design Quality Metrics” by Robert

Martin in 1994
� http://www.objectmentor.com/resources/articles/oodmetrc.pdf

12/03/2010 13

Cap Usage

� Install CAP from the Eclipse Update site
� http://cap.xore.de/update (JFreechart will also be installed)
� CAP has its own Eclipse perspective!
� While CAP has a lot of screens, they all show the same thing
� There are actually two things that you can do

– Find cycles in your packages
– Inspect the JDepend distance (how good is your architecture)– Inspect the JDepend distance (how good is your architecture)

12/03/2010 14

Cap Screens (1/5)

� On the left
� All packages of the

application.
� White packages are

libraries
� Acts as selector for the � Acts as selector for the

rest of the screens
� Cycle Detection

12/03/2010 15

Detecting cycles

� Detect Cycles as JDepend does
� Also detected by Sonar or CAST
� Click the “Check Cycles” button on the “Cycle” Tab

Good

12/03/2010 16

Bad

Cap Screens (2/5)

� Main view shows
package dependencies
(imports)

� Same information as
JDepend

� Shows package � Shows package
selected from the tree
(Screen 1)

12/03/2010 17

Cap Screens (3/5)

� Right view shows
numerical info

� Same information as
JDepend

� Abstractness, instability
and Distanceand Distance

12/03/2010 18

Cap Screens (4/5)

� Right view shows same
thing as main view

� Same information as
JDepend

12/03/2010 19

Cap Screens (5/5)

� Most important screen
� Shows architecture distance
� I would be happy if you use only this from the presentation

12/03/2010 20

Architecture Distance

� The graph shows architecture distance
� Each circle is a package from your code
� Distance is a number from 0% to 100%
� Distance is also reported by JDepend
� Distance is 0% means perfect system, 100% means ugly system
� We need to define what is the perfect system according to JDepend
� We also define instability and abstractness (also by JDepend)� We also define instability and abstractness (also by JDepend)

12/03/2010 21

Typical Enterprise system

� There are classes used by everybody
� There are classes that use everybody else
� Each layer depends on the one below (ideally)
� Core classes do not depend on anything
� Clients are not used by anything

12/03/2010 22

Core/Model

Services/Middleware

Client/UI

“Perfect” Enterprise system

� JDepend suggests that:
� Classes that use everybody else should be concrete
� Classes used by everybody should be abstract
� Distance is how far you are from this perfect system

12/03/2010 23

Core/Model

Services/Middleware

Client/UI

Concrete Classes

Abstract/Interfaces

Abstractness

� Percent of classes in a package that are abstract/interfaces
� 0 = a package with concrete classes only
� 1 = a package with only abstract classes
� The x – direction shows “abstractness” of a package

12/03/2010 24

A
bs

tr
ac

t

C
on

cr
et

e

X axis

(In)stability

� (Inverse) Ratio of packages that are depended upon this package
� 0 = a package that everybody uses
� 1 = a package nobody uses
� The y – direction shows “instability” of a package

Clients/GUI

12/03/2010 25

Core/ModelY axis

Distance Example (1/5)

� Perfect package for gui/clients
� Used by nobody (instability = 1)
� All classes are concrete (abstractness = 0)

12/03/2010 26

Good!

Distance Example (2/5)

� Perfect package for core/model
� Used by everybody(instability = 0)
� No concrete class (abstractness = 1)

12/03/2010 27

Good!

Distance Example (3/5)

� Middleware
� Used by some and uses others (instability = 0 -1)
� Both concrete class and abstract classes(abstractness = 0 -1)

12/03/2010 28

Good!

Distance Example (4/5)

� Badly designed core (most common case!)
� Used by everybody (instability = 0)
� Concrete implementation – hard to change (abstractness = 0)

12/03/2010 29

Bad

Distance Example (5/5)

� Un-needed abstract classes (uncommon case)
� Used by nobody(instability = 1)
� Abstract implementation (abstractness = 1)

12/03/2010 30

Bad

JDepend distance on small PIM prototype

� With one look you can see the general architecture
� You can select a package on the graph to see details
� Real life example (two packages should be more abstract)

12/03/2010 31

Dessert

12/03/2010 32

Chidamber and Kemerer Java Metrics

� CKJM Metrics (1996 paper)
� http://www.spinellis.gr/sw/ckjm/
� Sonar plugin:

http://docs.codehaus.org/display/SONAR/Isotrol+MetricsAnalytics
� Defines (not all are used)

– WMC
– DIT– DIT
– NOC
– CBO
– RFC
– LCOM
– CA
– NPM

12/03/2010 33

Usage of the Sonar plugin

� Total Quality of a project
� Defined by 10 metrics
� Grouped in 4 categories
� Formula of total quality:

– 25% Tests
– 25% Architecture– 25% Architecture
– 25% Design
– 25% Code

12/03/2010 34

Metric: Test coverage (1/10)

� Test Coverage
� Is a whole category on its own (25% of Total quality)
� Formula: Test coverage = Tests Category

12/03/2010 35

Metric: ADI (2/10)

� Distance from the main sequence (same as JDepend)
� Is the first half of Architecture category (12% of Total quality)
� Sonar suggests that values less that 20% are optimal
� Formula: Percent of optimal packages / total packages

12/03/2010 36

Metric: Cohesion (3/10)

� Package cycles (same as JDepend)
� Is the second half of Architecture category (12% of Total quality)
� Sonar assumes that only 0 cycle packages are optimal
� Formula: Percent of optimal packages / total packages

12/03/2010 37

Metric: Nom(4/10)

� Sonar Metric Number of Methods
� Is the first part of Design category (5% of Total quality)
� Average Cyclomatic complexity for methods of a class
� Sonar assumes that less than 20 for a method is optimal
� Formula: Percent of optimal classes/ total classes

12/03/2010 38

Metric: RFC(5/10)

� CKJM Metric Response per class
� Is the second part of Design category (7,5% of Total quality)
� Number of methods a method calls (recursively)
� Sonar assumes that less than 50 for a class is optimal
� Formula: Percent of optimal classes/ total classes

12/03/2010 39

Metric: CBO(6/10)

� CJM Metric Coupling between objects
� Is the third part of Design category (7,5% of Total quality)
� Number of classes used by a class (similar to JDepend CE)
� Sonar assumes that less than 5 for a class is optimal
� Formula: Percent of optimal classes/ total classes

12/03/2010 40

Metric: DIT(7/10)

� CJM Metric Depth of Inheritance Tree
� Is the fourth part of Design category (5% of Total quality)
� How deep the hierarchy goes
� Sonar assumes that less than 5 for a class is optimal
� Formula: Percent of optimal classes/ total classes

12/03/2010 41

Metric: DOC(8/10)

� Sonar Metric Documention
� Is the first part of Code category (3,75% of Total quality)
� How many comments exist in the code
� Sonar assumes 40% of lines should be comments
� Formula: Percent of comment * 10 / 4

12/03/2010 42

Metric: Dry(9/10)

� CPD Metric Duplicated lines
� Is the second part of Code category (10% of Total quality)
� How many code lines are the same
� Sonar assumes no code lines should be the same
� Formula: Percent of non-duplicated lines/ total lines

12/03/2010 43

Metric: Violations(10/10)

� PDM, Findbugs, Checkstyle Violations
� Is the third part of Code category (11,25% of Total quality)
� Violations not in the “info” category.
� Sonar assumes no violations should be present
� Formula: Rules Compliance Percent

12/03/2010 44

Thank you

12/03/2010 45

